jaxtransform3d.transformations.transform_from_exponential_coordinates#
- jaxtransform3d.transformations.transform_from_exponential_coordinates(exp_coords: Array | ndarray | bool_ | number | bool | int | float | complex) Array [source]#
Compute transformation matrix from exponential coordinates.
This is the exponential map.
\[Exp: \mathcal{S} \theta \in \mathbb{R}^6 \rightarrow \boldsymbol{T} \in SE(3)\]\[\begin{split}Exp(\mathcal{S}\theta) = Exp\left(\left(\begin{array}{c} \hat{\boldsymbol{\omega}}\\ \boldsymbol{v} \end{array}\right)\theta\right) = \exp(\left[\mathcal{S}\right] \theta) = \left(\begin{array}{cc} Exp(\hat{\boldsymbol{\omega}} \theta) & \boldsymbol{J}(\theta)\boldsymbol{v}\theta\\ \boldsymbol{0} & 1 \end{array}\right),\end{split}\]where \(\boldsymbol{J}(\theta)\) is the left Jacobian of \(SO(3)\).
- Parameters:
- exp_coordsarray-like, shape (…, 6)
Exponential coordinates of transformation: S * theta = (omega_1, omega_2, omega_3, v_1, v_2, v_3) * theta, where S is the screw axis, the first 3 components are related to rotation and the last 3 components are related to translation. Theta is the rotation angle and h * theta the translation.
- Returns:
- Tarray, shape (…, 4, 4)
Transformation matrix.
See also
exponential_coordinates_from_transform
Logarithmic map.
dual_quaternion_from_exponential_coordinates
Exponential map for dual quaternions.