Module gmr.gmm
Expand source code
import numpy as np
from scipy.spatial.distance import cdist, pdist
from scipy.stats import chi2
from .utils import check_random_state
from .mvn import MVN, invert_indices, regression_coefficients
def kmeansplusplus_initialization(X, n_components, random_state=None):
"""k-means++ initialization for centers of a GMM.
Initialization of GMM centers before expectation maximization (EM).
The first center is selected uniformly random. Subsequent centers are
sampled from the data with probability proportional to the squared
distance to the closest center.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Samples from the true distribution.
n_components : int (> 0)
Number of MVNs that compose the GMM.
random_state : int or RandomState, optional (default: global random state)
If an integer is given, it fixes the seed. Defaults to the global numpy
random number generator.
Returns
-------
initial_means : array, shape (n_components, n_features)
Initial means
"""
if n_components <= 0:
raise ValueError("Only n_components > 0 allowed.")
if n_components > len(X):
raise ValueError(
"More components (%d) than samples (%d) are not allowed."
% (n_components, len(X)))
random_state = check_random_state(random_state)
all_indices = np.arange(len(X))
selected_centers = [random_state.choice(all_indices, size=1).tolist()[0]]
while len(selected_centers) < n_components:
centers = np.atleast_2d(X[np.array(selected_centers, dtype=int)])
i = _select_next_center(X, centers, random_state, selected_centers, all_indices)
selected_centers.append(i)
return X[np.array(selected_centers, dtype=int)]
def _select_next_center(X, centers, random_state, excluded_indices,
all_indices):
"""Sample with probability proportional to the squared distance to closest center."""
squared_distances = cdist(X, centers, metric="sqeuclidean")
selection_probability = squared_distances.max(axis=1)
selection_probability[np.array(excluded_indices, dtype=int)] = 0.0
selection_probability /= np.sum(selection_probability)
return random_state.choice(all_indices, size=1, p=selection_probability)[0]
def covariance_initialization(X, n_components):
"""Initialize covariances.
The standard deviation in each dimension is set to the average Euclidean
distance of the training samples divided by the number of components.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Samples from the true distribution.
n_components : int (> 0)
Number of MVNs that compose the GMM.
Returns
-------
initial_covariances : array, shape (n_components, n_features, n_features)
Initial covariances
"""
if n_components <= 0:
raise ValueError(
"It does not make sense to initialize 0 or fewer covariances.")
n_features = X.shape[1]
average_distances = np.empty(n_features)
for i in range(n_features):
average_distances[i] = np.mean(
pdist(X[:, i, np.newaxis], metric="euclidean"))
initial_covariances = np.empty((n_components, n_features, n_features))
initial_covariances[:] = (np.eye(n_features) *
(average_distances / n_components) ** 2)
return initial_covariances
class GMM(object):
"""Gaussian Mixture Model.
Parameters
----------
n_components : int
Number of MVNs that compose the GMM.
priors : array-like, shape (n_components,), optional
Weights of the components.
means : array-like, shape (n_components, n_features), optional
Means of the components.
covariances : array-like, shape (n_components, n_features, n_features), optional
Covariances of the components.
verbose : int, optional (default: 0)
Verbosity level.
random_state : int or RandomState, optional (default: global random state)
If an integer is given, it fixes the seed. Defaults to the global numpy
random number generator.
"""
def __init__(self, n_components, priors=None, means=None, covariances=None,
verbose=0, random_state=None):
self.n_components = n_components
self.priors = priors
self.means = means
self.covariances = covariances
self.verbose = verbose
self.random_state = check_random_state(random_state)
if self.priors is not None:
self.priors = np.asarray(self.priors)
if self.means is not None:
self.means = np.asarray(self.means)
if self.covariances is not None:
self.covariances = np.asarray(self.covariances)
def _check_initialized(self):
if self.priors is None:
raise ValueError("Priors have not been initialized")
if self.means is None:
raise ValueError("Means have not been initialized")
if self.covariances is None:
raise ValueError("Covariances have not been initialized")
def from_samples(self, X, R_diff=1e-4, n_iter=100, init_params="random",
oracle_approximating_shrinkage=False):
"""MLE of the mean and covariance.
Expectation-maximization is used to infer the model parameters. The
objective function is non-convex. Hence, multiple runs can have
different results.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Samples from the true distribution.
R_diff : float
Minimum allowed difference of responsibilities between successive
EM iterations.
n_iter : int
Maximum number of iterations.
init_params : str, optional (default: 'random')
Parameter initialization strategy. If means and covariances are
given in the constructor, this parameter will have no effect.
'random' will sample initial means randomly from the dataset
and set covariances to identity matrices. This is the
computationally cheap solution.
'kmeans++' will use k-means++ initialization for means and
initialize covariances to diagonal matrices with variances
set based on the average distances of samples in each dimensions.
This is computationally more expensive but often gives much
better results.
oracle_approximating_shrinkage : bool, optional (default: False)
Use Oracle Approximating Shrinkage (OAS) estimator for covariances
to ensure positive semi-definiteness.
Returns
-------
self : GMM
This object.
"""
n_samples, n_features = X.shape
if self.priors is None:
self.priors = np.ones(self.n_components,
dtype=float) / self.n_components
if init_params not in ["random", "kmeans++"]:
raise ValueError("'init_params' must be 'random' or 'kmeans++' "
"but is '%s'" % init_params)
if self.means is None:
if init_params == "random":
indices = self.random_state.choice(
np.arange(n_samples), self.n_components)
self.means = X[indices]
else:
self.means = kmeansplusplus_initialization(
X, self.n_components, self.random_state)
if self.covariances is None:
if init_params == "random":
self.covariances = np.empty(
(self.n_components, n_features, n_features))
self.covariances[:] = np.eye(n_features)
else:
self.covariances = covariance_initialization(
X, self.n_components)
R = np.zeros((n_samples, self.n_components))
for _ in range(n_iter):
R_prev = R
# Expectation
R = self.to_responsibilities(X)
if np.linalg.norm(R - R_prev) < R_diff:
if self.verbose:
print("EM converged.")
break
# Maximization
w = R.sum(axis=0) + 10.0 * np.finfo(R.dtype).eps
R_n = R / w
self.priors = w / w.sum()
self.means = R_n.T.dot(X)
for k in range(self.n_components):
Xm = X - self.means[k]
self.covariances[k] = (R_n[:, k, np.newaxis] * Xm).T.dot(Xm)
if oracle_approximating_shrinkage:
n_samples_eff = (np.sum(R_n, axis=0) ** 2 /
np.sum(R_n ** 2, axis=0))
self.apply_oracle_approximating_shrinkage(n_samples_eff)
return self
def apply_oracle_approximating_shrinkage(self, n_samples_eff):
"""Apply Oracle Approximating Shrinkage to covariances.
Empirical covariances might have negative eigenvalues caused by
numerical issues so that they are not positive semi-definite and
are not invertible. In these cases it is better to apply this
function after training. You can also apply it after each
EM step with a flag of `GMM.from_samples`.
This is an implementation of
Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”,
IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.
based on the implementation of scikit-learn:
https://scikit-learn.org/stable/modules/generated/oas-function.html#sklearn.covariance.oas
Parameters
----------
n_samples_eff : float or array-like, shape (n_components,)
Number of effective samples from which the covariances have been
estimated. A rough estimate would be the size of the dataset.
Covariances are computed from a weighted dataset in EM. In this
case we can compute the number of effective samples by
`np.sum(weights, axis=0) ** 2 / np.sum(weights ** 2, axis=0)`
from an array weights of shape (n_samples, n_components).
"""
self._check_initialized()
n_samples_eff = np.ones(self.n_components) * np.asarray(n_samples_eff)
n_features = self.means.shape[1]
for k in range(self.n_components):
emp_cov = self.covariances[k]
mu = np.trace(emp_cov) / n_features
alpha = np.mean(emp_cov ** 2)
num = alpha + mu ** 2
den = (n_samples_eff[k] + 1.) * (alpha - (mu ** 2) / n_features)
shrinkage = 1. if den == 0 else min(num / den, 1.)
shrunk_cov = (1. - shrinkage) * emp_cov
shrunk_cov.flat[::n_features + 1] += shrinkage * mu
self.covariances[k] = shrunk_cov
def sample(self, n_samples):
"""Sample from Gaussian mixture distribution.
Parameters
----------
n_samples : int
Number of samples.
Returns
-------
X : array, shape (n_samples, n_features)
Samples from the GMM.
"""
self._check_initialized()
mvn_indices = self.random_state.choice(
self.n_components, size=(n_samples,), p=self.priors)
mvn_indices.sort()
split_indices = np.hstack(
((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,)))
clusters = np.unique(mvn_indices)
lens = np.diff(split_indices)
samples = np.empty((n_samples, self.means.shape[1]))
for i, (k, n_samples) in enumerate(zip(clusters, lens)):
samples[split_indices[i]:split_indices[i + 1]] = MVN(
mean=self.means[k], covariance=self.covariances[k],
random_state=self.random_state).sample(n_samples=n_samples)
return samples
def sample_confidence_region(self, n_samples, alpha):
"""Sample from alpha confidence region.
Each MVN is selected with its prior probability and then we
sample from the confidence region of the selected MVN.
Parameters
----------
n_samples : int
Number of samples.
alpha : float
Value between 0 and 1 that defines the probability of the
confidence region, e.g., 0.6827 for the 1-sigma confidence
region or 0.9545 for the 2-sigma confidence region.
Returns
-------
X : array, shape (n_samples, n_features)
Samples from the confidence region.
"""
self._check_initialized()
mvn_indices = self.random_state.choice(
self.n_components, size=(n_samples,), p=self.priors)
mvn_indices.sort()
split_indices = np.hstack(
((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,)))
clusters = np.unique(mvn_indices)
lens = np.diff(split_indices)
samples = np.empty((n_samples, self.means.shape[1]))
for i, (k, n_samples) in enumerate(zip(clusters, lens)):
samples[split_indices[i]:split_indices[i + 1]] = MVN(
mean=self.means[k], covariance=self.covariances[k],
random_state=self.random_state).sample_confidence_region(
n_samples=n_samples, alpha=alpha)
return samples
def is_in_confidence_region(self, x, alpha):
"""Check if sample is in alpha confidence region.
Check whether the sample lies in the confidence region of the closest
MVN according to the Mahalanobis distance.
Parameters
----------
x : array, shape (n_features,)
Sample
alpha : float
Value between 0 and 1 that defines the probability of the
confidence region, e.g., 0.6827 for the 1-sigma confidence
region or 0.9545 for the 2-sigma confidence region.
Returns
-------
is_in_confidence_region : bool
Is the sample in the alpha confidence region?
"""
self._check_initialized()
dists = [MVN(mean=self.means[k], covariance=self.covariances[k]
).squared_mahalanobis_distance(x)
for k in range(self.n_components)]
# we have one degree of freedom less than number of dimensions
n_dof = len(x) - 1
return min(dists) <= chi2(n_dof).ppf(alpha)
def to_responsibilities(self, X):
"""Compute responsibilities of each MVN for each sample.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Data.
Returns
-------
R : array, shape (n_samples, n_components)
"""
self._check_initialized()
n_samples = X.shape[0]
norm_factors = np.empty(self.n_components)
exponents = np.empty((n_samples, self.n_components))
for k in range(self.n_components):
norm_factors[k], exponents[:, k] = MVN(
mean=self.means[k], covariance=self.covariances[k],
random_state=self.random_state).to_norm_factor_and_exponents(X)
return _safe_probability_density(self.priors * norm_factors, exponents)
def to_probability_density(self, X):
"""Compute probability density.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Data.
Returns
-------
p : array, shape (n_samples,)
Probability densities of data.
"""
self._check_initialized()
p = [MVN(mean=self.means[k], covariance=self.covariances[k],
random_state=self.random_state).to_probability_density(X)
for k in range(self.n_components)]
return np.dot(self.priors, p)
def condition(self, indices, x):
"""Conditional distribution over given indices.
Parameters
----------
indices : array-like, shape (n_new_features,)
Indices of dimensions that we want to condition.
x : array-like, shape (n_new_features,)
Values of the features that we know.
Returns
-------
conditional : GMM
Conditional GMM distribution p(Y | X=x).
"""
self._check_initialized()
indices = np.asarray(indices, dtype=int)
x = np.asarray(x)
n_features = self.means.shape[1] - len(indices)
means = np.empty((self.n_components, n_features))
covariances = np.empty((self.n_components, n_features, n_features))
marginal_norm_factors = np.empty(self.n_components)
marginal_prior_exponents = np.empty(self.n_components)
for k in range(self.n_components):
mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
random_state=self.random_state)
conditioned = mvn.condition(indices, x)
means[k] = conditioned.mean
covariances[k] = conditioned.covariance
marginal_norm_factors[k], marginal_prior_exponents[k] = \
mvn.marginalize(indices).to_norm_factor_and_exponents(x)
priors = _safe_probability_density(
self.priors * marginal_norm_factors,
marginal_prior_exponents[np.newaxis])[0]
return GMM(n_components=self.n_components, priors=priors, means=means,
covariances=covariances, random_state=self.random_state)
def predict(self, indices, X):
"""Predict means of posteriors.
Same as condition() but for multiple samples.
Parameters
----------
indices : array-like, shape (n_features_1,)
Indices of dimensions that we want to condition.
X : array-like, shape (n_samples, n_features_1)
Values of the features that we know.
Returns
-------
Y : array, shape (n_samples, n_features_2)
Predicted means of missing values.
"""
self._check_initialized()
indices = np.asarray(indices, dtype=int)
X = np.asarray(X)
n_samples = len(X)
output_indices = invert_indices(self.means.shape[1], indices)
regression_coeffs = np.empty((
self.n_components, len(output_indices), len(indices)))
marginal_norm_factors = np.empty(self.n_components)
marginal_exponents = np.empty((n_samples, self.n_components))
for k in range(self.n_components):
regression_coeffs[k] = regression_coefficients(
self.covariances[k], output_indices, indices)
mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
random_state=self.random_state)
marginal_norm_factors[k], marginal_exponents[:, k] = \
mvn.marginalize(indices).to_norm_factor_and_exponents(X)
# posterior_means = mean_y + cov_xx^-1 * cov_xy * (x - mean_x)
posterior_means = (
self.means[:, output_indices][:, :, np.newaxis].T +
np.einsum(
"ijk,lik->lji",
regression_coeffs,
X[:, np.newaxis] - self.means[:, indices]))
priors = _safe_probability_density(
self.priors * marginal_norm_factors, marginal_exponents)
priors = priors.reshape(n_samples, 1, self.n_components)
return np.sum(priors * posterior_means, axis=-1)
def to_ellipses(self, factor=1.0):
"""Compute error ellipses.
An error ellipse shows equiprobable points.
Parameters
----------
factor : float
One means standard deviation.
Returns
-------
ellipses : list
Parameters that describe the error ellipses of all components:
mean and a tuple of angles, widths and heights. Note that widths
and heights are semi axes, not diameters.
"""
self._check_initialized()
res = []
for k in range(self.n_components):
mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
random_state=self.random_state)
res.append((self.means[k], mvn.to_ellipse(factor)))
return res
def to_mvn(self):
"""Collapse to a single Gaussian.
Returns
-------
mvn : MVN
Multivariate normal distribution.
"""
self._check_initialized()
mean = np.sum(self.priors[:, np.newaxis] * self.means, 0)
assert len(self.covariances)
covariance = np.zeros_like(self.covariances[0])
covariance += np.sum(self.priors[:, np.newaxis, np.newaxis] * self.covariances, axis=0)
covariance += self.means.T.dot(np.diag(self.priors)).dot(self.means)
covariance -= np.outer(mean, mean)
return MVN(mean=mean, covariance=covariance,
verbose=self.verbose, random_state=self.random_state)
def extract_mvn(self, component_idx):
"""Extract one of the Gaussians from the mixture.
Parameters
----------
component_idx : int
Index of the component that should be extracted.
Returns
-------
mvn : MVN
The component_idx-th multivariate normal distribution of this GMM.
"""
self._check_initialized()
if component_idx < 0 or component_idx >= self.n_components:
raise ValueError("Index of Gaussian must be in [%d, %d)"
% (0, self.n_components))
return MVN(
mean=self.means[component_idx],
covariance=self.covariances[component_idx], verbose=self.verbose,
random_state=self.random_state)
def plot_error_ellipses(ax, gmm, colors=None, alpha=0.25, factors=np.linspace(0.25, 2.0, 8)):
"""Plot error ellipses of GMM components.
Parameters
----------
ax : axis
Matplotlib axis.
gmm : GMM
Gaussian mixture model.
colors : list of str, optional (default: None)
Colors in which the ellipses should be plotted
alpha : int, optional (default: 0.25)
Alpha value for ellipses
factors : array, optional (default: np.linspace(0.25, 2.0, 8))
Multiples of the standard deviations that should be plotted.
"""
from matplotlib.patches import Ellipse
from itertools import cycle
if colors is not None:
colors = cycle(colors)
for factor in factors:
for mean, (angle, width, height) in gmm.to_ellipses(factor):
ell = Ellipse(xy=mean, width=2.0 * width, height=2.0 * height,
angle=np.degrees(angle))
ell.set_alpha(alpha)
if colors is not None:
ell.set_color(next(colors))
ax.add_artist(ell)
def _safe_probability_density(norm_factors, exponents):
"""Compute numerically safe probability densities of a GMM.
The probability density of individual Gaussians in a GMM can be computed
from a formula of the form
q_k(X=x) = p_k(X=x) / sum_l p_l(X=x)
where p_k(X=x) = c_k * exp(exponent_k) so that
q_k(X=x) = c_k * exp(exponent_k) / sum_l c_l * exp(exponent_l)
Instead of using computing this directly, we implement it in a numerically
more stable version that works better for very small or large exponents
that would otherwise lead to NaN or division by 0.
The following expression is mathematically equal for any constant m:
q_k(X=x) = c_k * exp(exponent_k - m) / sum_l c_l * exp(exponent_l - m),
where we set m = max_l exponents_l.
Parameters
----------
norm_factors : array, shape (n_components,)
Normalization factors of individual Gaussians
exponents : array, shape (n_samples, n_components)
Exponents of each combination of Gaussian and sample
Returns
-------
p : array, shape (n_samples, n_components)
Probability density of each sample
"""
m = np.max(exponents, axis=1)[:, np.newaxis]
p = norm_factors[np.newaxis] * np.exp(exponents - m)
p /= np.sum(p, axis=1)[:, np.newaxis]
return p
Functions
def covariance_initialization(X, n_components)
-
Initialize covariances.
The standard deviation in each dimension is set to the average Euclidean distance of the training samples divided by the number of components.
Parameters
X
:array-like, shape (n_samples, n_features)
- Samples from the true distribution.
n_components
:int (> 0)
- Number of MVNs that compose the GMM.
Returns
initial_covariances
:array, shape (n_components, n_features, n_features)
- Initial covariances
Expand source code
def covariance_initialization(X, n_components): """Initialize covariances. The standard deviation in each dimension is set to the average Euclidean distance of the training samples divided by the number of components. Parameters ---------- X : array-like, shape (n_samples, n_features) Samples from the true distribution. n_components : int (> 0) Number of MVNs that compose the GMM. Returns ------- initial_covariances : array, shape (n_components, n_features, n_features) Initial covariances """ if n_components <= 0: raise ValueError( "It does not make sense to initialize 0 or fewer covariances.") n_features = X.shape[1] average_distances = np.empty(n_features) for i in range(n_features): average_distances[i] = np.mean( pdist(X[:, i, np.newaxis], metric="euclidean")) initial_covariances = np.empty((n_components, n_features, n_features)) initial_covariances[:] = (np.eye(n_features) * (average_distances / n_components) ** 2) return initial_covariances
def kmeansplusplus_initialization(X, n_components, random_state=None)
-
k-means++ initialization for centers of a GMM.
Initialization of GMM centers before expectation maximization (EM). The first center is selected uniformly random. Subsequent centers are sampled from the data with probability proportional to the squared distance to the closest center.
Parameters
X
:array-like, shape (n_samples, n_features)
- Samples from the true distribution.
n_components
:int (> 0)
- Number of MVNs that compose the GMM.
random_state
:int
orRandomState
, optional(default: global random state)
- If an integer is given, it fixes the seed. Defaults to the global numpy random number generator.
Returns
initial_means
:array, shape (n_components, n_features)
- Initial means
Expand source code
def kmeansplusplus_initialization(X, n_components, random_state=None): """k-means++ initialization for centers of a GMM. Initialization of GMM centers before expectation maximization (EM). The first center is selected uniformly random. Subsequent centers are sampled from the data with probability proportional to the squared distance to the closest center. Parameters ---------- X : array-like, shape (n_samples, n_features) Samples from the true distribution. n_components : int (> 0) Number of MVNs that compose the GMM. random_state : int or RandomState, optional (default: global random state) If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Returns ------- initial_means : array, shape (n_components, n_features) Initial means """ if n_components <= 0: raise ValueError("Only n_components > 0 allowed.") if n_components > len(X): raise ValueError( "More components (%d) than samples (%d) are not allowed." % (n_components, len(X))) random_state = check_random_state(random_state) all_indices = np.arange(len(X)) selected_centers = [random_state.choice(all_indices, size=1).tolist()[0]] while len(selected_centers) < n_components: centers = np.atleast_2d(X[np.array(selected_centers, dtype=int)]) i = _select_next_center(X, centers, random_state, selected_centers, all_indices) selected_centers.append(i) return X[np.array(selected_centers, dtype=int)]
def plot_error_ellipses(ax, gmm, colors=None, alpha=0.25, factors=array([0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ]))
-
Plot error ellipses of GMM components.
Parameters
ax
:axis
- Matplotlib axis.
gmm
:GMM
- Gaussian mixture model.
colors
:list
ofstr
, optional(default: None)
- Colors in which the ellipses should be plotted
alpha
:int
, optional(default: 0.25)
- Alpha value for ellipses
factors
:array
, optional(default: np.linspace(0.25, 2.0, 8))
- Multiples of the standard deviations that should be plotted.
Expand source code
def plot_error_ellipses(ax, gmm, colors=None, alpha=0.25, factors=np.linspace(0.25, 2.0, 8)): """Plot error ellipses of GMM components. Parameters ---------- ax : axis Matplotlib axis. gmm : GMM Gaussian mixture model. colors : list of str, optional (default: None) Colors in which the ellipses should be plotted alpha : int, optional (default: 0.25) Alpha value for ellipses factors : array, optional (default: np.linspace(0.25, 2.0, 8)) Multiples of the standard deviations that should be plotted. """ from matplotlib.patches import Ellipse from itertools import cycle if colors is not None: colors = cycle(colors) for factor in factors: for mean, (angle, width, height) in gmm.to_ellipses(factor): ell = Ellipse(xy=mean, width=2.0 * width, height=2.0 * height, angle=np.degrees(angle)) ell.set_alpha(alpha) if colors is not None: ell.set_color(next(colors)) ax.add_artist(ell)
Classes
class GMM (n_components, priors=None, means=None, covariances=None, verbose=0, random_state=None)
-
Gaussian Mixture Model.
Parameters
n_components
:int
- Number of MVNs that compose the GMM.
priors
:array-like, shape (n_components,)
, optional- Weights of the components.
means
:array-like, shape (n_components, n_features)
, optional- Means of the components.
covariances
:array-like, shape (n_components, n_features, n_features)
, optional- Covariances of the components.
verbose
:int
, optional(default: 0)
- Verbosity level.
random_state
:int
orRandomState
, optional(default: global random state)
- If an integer is given, it fixes the seed. Defaults to the global numpy random number generator.
Expand source code
class GMM(object): """Gaussian Mixture Model. Parameters ---------- n_components : int Number of MVNs that compose the GMM. priors : array-like, shape (n_components,), optional Weights of the components. means : array-like, shape (n_components, n_features), optional Means of the components. covariances : array-like, shape (n_components, n_features, n_features), optional Covariances of the components. verbose : int, optional (default: 0) Verbosity level. random_state : int or RandomState, optional (default: global random state) If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. """ def __init__(self, n_components, priors=None, means=None, covariances=None, verbose=0, random_state=None): self.n_components = n_components self.priors = priors self.means = means self.covariances = covariances self.verbose = verbose self.random_state = check_random_state(random_state) if self.priors is not None: self.priors = np.asarray(self.priors) if self.means is not None: self.means = np.asarray(self.means) if self.covariances is not None: self.covariances = np.asarray(self.covariances) def _check_initialized(self): if self.priors is None: raise ValueError("Priors have not been initialized") if self.means is None: raise ValueError("Means have not been initialized") if self.covariances is None: raise ValueError("Covariances have not been initialized") def from_samples(self, X, R_diff=1e-4, n_iter=100, init_params="random", oracle_approximating_shrinkage=False): """MLE of the mean and covariance. Expectation-maximization is used to infer the model parameters. The objective function is non-convex. Hence, multiple runs can have different results. Parameters ---------- X : array-like, shape (n_samples, n_features) Samples from the true distribution. R_diff : float Minimum allowed difference of responsibilities between successive EM iterations. n_iter : int Maximum number of iterations. init_params : str, optional (default: 'random') Parameter initialization strategy. If means and covariances are given in the constructor, this parameter will have no effect. 'random' will sample initial means randomly from the dataset and set covariances to identity matrices. This is the computationally cheap solution. 'kmeans++' will use k-means++ initialization for means and initialize covariances to diagonal matrices with variances set based on the average distances of samples in each dimensions. This is computationally more expensive but often gives much better results. oracle_approximating_shrinkage : bool, optional (default: False) Use Oracle Approximating Shrinkage (OAS) estimator for covariances to ensure positive semi-definiteness. Returns ------- self : GMM This object. """ n_samples, n_features = X.shape if self.priors is None: self.priors = np.ones(self.n_components, dtype=float) / self.n_components if init_params not in ["random", "kmeans++"]: raise ValueError("'init_params' must be 'random' or 'kmeans++' " "but is '%s'" % init_params) if self.means is None: if init_params == "random": indices = self.random_state.choice( np.arange(n_samples), self.n_components) self.means = X[indices] else: self.means = kmeansplusplus_initialization( X, self.n_components, self.random_state) if self.covariances is None: if init_params == "random": self.covariances = np.empty( (self.n_components, n_features, n_features)) self.covariances[:] = np.eye(n_features) else: self.covariances = covariance_initialization( X, self.n_components) R = np.zeros((n_samples, self.n_components)) for _ in range(n_iter): R_prev = R # Expectation R = self.to_responsibilities(X) if np.linalg.norm(R - R_prev) < R_diff: if self.verbose: print("EM converged.") break # Maximization w = R.sum(axis=0) + 10.0 * np.finfo(R.dtype).eps R_n = R / w self.priors = w / w.sum() self.means = R_n.T.dot(X) for k in range(self.n_components): Xm = X - self.means[k] self.covariances[k] = (R_n[:, k, np.newaxis] * Xm).T.dot(Xm) if oracle_approximating_shrinkage: n_samples_eff = (np.sum(R_n, axis=0) ** 2 / np.sum(R_n ** 2, axis=0)) self.apply_oracle_approximating_shrinkage(n_samples_eff) return self def apply_oracle_approximating_shrinkage(self, n_samples_eff): """Apply Oracle Approximating Shrinkage to covariances. Empirical covariances might have negative eigenvalues caused by numerical issues so that they are not positive semi-definite and are not invertible. In these cases it is better to apply this function after training. You can also apply it after each EM step with a flag of `GMM.from_samples`. This is an implementation of Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”, IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. based on the implementation of scikit-learn: https://scikit-learn.org/stable/modules/generated/oas-function.html#sklearn.covariance.oas Parameters ---------- n_samples_eff : float or array-like, shape (n_components,) Number of effective samples from which the covariances have been estimated. A rough estimate would be the size of the dataset. Covariances are computed from a weighted dataset in EM. In this case we can compute the number of effective samples by `np.sum(weights, axis=0) ** 2 / np.sum(weights ** 2, axis=0)` from an array weights of shape (n_samples, n_components). """ self._check_initialized() n_samples_eff = np.ones(self.n_components) * np.asarray(n_samples_eff) n_features = self.means.shape[1] for k in range(self.n_components): emp_cov = self.covariances[k] mu = np.trace(emp_cov) / n_features alpha = np.mean(emp_cov ** 2) num = alpha + mu ** 2 den = (n_samples_eff[k] + 1.) * (alpha - (mu ** 2) / n_features) shrinkage = 1. if den == 0 else min(num / den, 1.) shrunk_cov = (1. - shrinkage) * emp_cov shrunk_cov.flat[::n_features + 1] += shrinkage * mu self.covariances[k] = shrunk_cov def sample(self, n_samples): """Sample from Gaussian mixture distribution. Parameters ---------- n_samples : int Number of samples. Returns ------- X : array, shape (n_samples, n_features) Samples from the GMM. """ self._check_initialized() mvn_indices = self.random_state.choice( self.n_components, size=(n_samples,), p=self.priors) mvn_indices.sort() split_indices = np.hstack( ((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,))) clusters = np.unique(mvn_indices) lens = np.diff(split_indices) samples = np.empty((n_samples, self.means.shape[1])) for i, (k, n_samples) in enumerate(zip(clusters, lens)): samples[split_indices[i]:split_indices[i + 1]] = MVN( mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state).sample(n_samples=n_samples) return samples def sample_confidence_region(self, n_samples, alpha): """Sample from alpha confidence region. Each MVN is selected with its prior probability and then we sample from the confidence region of the selected MVN. Parameters ---------- n_samples : int Number of samples. alpha : float Value between 0 and 1 that defines the probability of the confidence region, e.g., 0.6827 for the 1-sigma confidence region or 0.9545 for the 2-sigma confidence region. Returns ------- X : array, shape (n_samples, n_features) Samples from the confidence region. """ self._check_initialized() mvn_indices = self.random_state.choice( self.n_components, size=(n_samples,), p=self.priors) mvn_indices.sort() split_indices = np.hstack( ((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,))) clusters = np.unique(mvn_indices) lens = np.diff(split_indices) samples = np.empty((n_samples, self.means.shape[1])) for i, (k, n_samples) in enumerate(zip(clusters, lens)): samples[split_indices[i]:split_indices[i + 1]] = MVN( mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state).sample_confidence_region( n_samples=n_samples, alpha=alpha) return samples def is_in_confidence_region(self, x, alpha): """Check if sample is in alpha confidence region. Check whether the sample lies in the confidence region of the closest MVN according to the Mahalanobis distance. Parameters ---------- x : array, shape (n_features,) Sample alpha : float Value between 0 and 1 that defines the probability of the confidence region, e.g., 0.6827 for the 1-sigma confidence region or 0.9545 for the 2-sigma confidence region. Returns ------- is_in_confidence_region : bool Is the sample in the alpha confidence region? """ self._check_initialized() dists = [MVN(mean=self.means[k], covariance=self.covariances[k] ).squared_mahalanobis_distance(x) for k in range(self.n_components)] # we have one degree of freedom less than number of dimensions n_dof = len(x) - 1 return min(dists) <= chi2(n_dof).ppf(alpha) def to_responsibilities(self, X): """Compute responsibilities of each MVN for each sample. Parameters ---------- X : array-like, shape (n_samples, n_features) Data. Returns ------- R : array, shape (n_samples, n_components) """ self._check_initialized() n_samples = X.shape[0] norm_factors = np.empty(self.n_components) exponents = np.empty((n_samples, self.n_components)) for k in range(self.n_components): norm_factors[k], exponents[:, k] = MVN( mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state).to_norm_factor_and_exponents(X) return _safe_probability_density(self.priors * norm_factors, exponents) def to_probability_density(self, X): """Compute probability density. Parameters ---------- X : array-like, shape (n_samples, n_features) Data. Returns ------- p : array, shape (n_samples,) Probability densities of data. """ self._check_initialized() p = [MVN(mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state).to_probability_density(X) for k in range(self.n_components)] return np.dot(self.priors, p) def condition(self, indices, x): """Conditional distribution over given indices. Parameters ---------- indices : array-like, shape (n_new_features,) Indices of dimensions that we want to condition. x : array-like, shape (n_new_features,) Values of the features that we know. Returns ------- conditional : GMM Conditional GMM distribution p(Y | X=x). """ self._check_initialized() indices = np.asarray(indices, dtype=int) x = np.asarray(x) n_features = self.means.shape[1] - len(indices) means = np.empty((self.n_components, n_features)) covariances = np.empty((self.n_components, n_features, n_features)) marginal_norm_factors = np.empty(self.n_components) marginal_prior_exponents = np.empty(self.n_components) for k in range(self.n_components): mvn = MVN(mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state) conditioned = mvn.condition(indices, x) means[k] = conditioned.mean covariances[k] = conditioned.covariance marginal_norm_factors[k], marginal_prior_exponents[k] = \ mvn.marginalize(indices).to_norm_factor_and_exponents(x) priors = _safe_probability_density( self.priors * marginal_norm_factors, marginal_prior_exponents[np.newaxis])[0] return GMM(n_components=self.n_components, priors=priors, means=means, covariances=covariances, random_state=self.random_state) def predict(self, indices, X): """Predict means of posteriors. Same as condition() but for multiple samples. Parameters ---------- indices : array-like, shape (n_features_1,) Indices of dimensions that we want to condition. X : array-like, shape (n_samples, n_features_1) Values of the features that we know. Returns ------- Y : array, shape (n_samples, n_features_2) Predicted means of missing values. """ self._check_initialized() indices = np.asarray(indices, dtype=int) X = np.asarray(X) n_samples = len(X) output_indices = invert_indices(self.means.shape[1], indices) regression_coeffs = np.empty(( self.n_components, len(output_indices), len(indices))) marginal_norm_factors = np.empty(self.n_components) marginal_exponents = np.empty((n_samples, self.n_components)) for k in range(self.n_components): regression_coeffs[k] = regression_coefficients( self.covariances[k], output_indices, indices) mvn = MVN(mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state) marginal_norm_factors[k], marginal_exponents[:, k] = \ mvn.marginalize(indices).to_norm_factor_and_exponents(X) # posterior_means = mean_y + cov_xx^-1 * cov_xy * (x - mean_x) posterior_means = ( self.means[:, output_indices][:, :, np.newaxis].T + np.einsum( "ijk,lik->lji", regression_coeffs, X[:, np.newaxis] - self.means[:, indices])) priors = _safe_probability_density( self.priors * marginal_norm_factors, marginal_exponents) priors = priors.reshape(n_samples, 1, self.n_components) return np.sum(priors * posterior_means, axis=-1) def to_ellipses(self, factor=1.0): """Compute error ellipses. An error ellipse shows equiprobable points. Parameters ---------- factor : float One means standard deviation. Returns ------- ellipses : list Parameters that describe the error ellipses of all components: mean and a tuple of angles, widths and heights. Note that widths and heights are semi axes, not diameters. """ self._check_initialized() res = [] for k in range(self.n_components): mvn = MVN(mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state) res.append((self.means[k], mvn.to_ellipse(factor))) return res def to_mvn(self): """Collapse to a single Gaussian. Returns ------- mvn : MVN Multivariate normal distribution. """ self._check_initialized() mean = np.sum(self.priors[:, np.newaxis] * self.means, 0) assert len(self.covariances) covariance = np.zeros_like(self.covariances[0]) covariance += np.sum(self.priors[:, np.newaxis, np.newaxis] * self.covariances, axis=0) covariance += self.means.T.dot(np.diag(self.priors)).dot(self.means) covariance -= np.outer(mean, mean) return MVN(mean=mean, covariance=covariance, verbose=self.verbose, random_state=self.random_state) def extract_mvn(self, component_idx): """Extract one of the Gaussians from the mixture. Parameters ---------- component_idx : int Index of the component that should be extracted. Returns ------- mvn : MVN The component_idx-th multivariate normal distribution of this GMM. """ self._check_initialized() if component_idx < 0 or component_idx >= self.n_components: raise ValueError("Index of Gaussian must be in [%d, %d)" % (0, self.n_components)) return MVN( mean=self.means[component_idx], covariance=self.covariances[component_idx], verbose=self.verbose, random_state=self.random_state)
Methods
def apply_oracle_approximating_shrinkage(self, n_samples_eff)
-
Apply Oracle Approximating Shrinkage to covariances.
Empirical covariances might have negative eigenvalues caused by numerical issues so that they are not positive semi-definite and are not invertible. In these cases it is better to apply this function after training. You can also apply it after each EM step with a flag of
GMM.from_samples()
.This is an implementation of
Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”, IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.
based on the implementation of scikit-learn:
https://scikit-learn.org/stable/modules/generated/oas-function.html#sklearn.covariance.oas
Parameters
n_samples_eff
:float
orarray-like, shape (n_components,)
- Number of effective samples from which the covariances have been
estimated. A rough estimate would be the size of the dataset.
Covariances are computed from a weighted dataset in EM. In this
case we can compute the number of effective samples by
np.sum(weights, axis=0) ** 2 / np.sum(weights ** 2, axis=0)
from an array weights of shape (n_samples, n_components).
Expand source code
def apply_oracle_approximating_shrinkage(self, n_samples_eff): """Apply Oracle Approximating Shrinkage to covariances. Empirical covariances might have negative eigenvalues caused by numerical issues so that they are not positive semi-definite and are not invertible. In these cases it is better to apply this function after training. You can also apply it after each EM step with a flag of `GMM.from_samples`. This is an implementation of Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”, IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. based on the implementation of scikit-learn: https://scikit-learn.org/stable/modules/generated/oas-function.html#sklearn.covariance.oas Parameters ---------- n_samples_eff : float or array-like, shape (n_components,) Number of effective samples from which the covariances have been estimated. A rough estimate would be the size of the dataset. Covariances are computed from a weighted dataset in EM. In this case we can compute the number of effective samples by `np.sum(weights, axis=0) ** 2 / np.sum(weights ** 2, axis=0)` from an array weights of shape (n_samples, n_components). """ self._check_initialized() n_samples_eff = np.ones(self.n_components) * np.asarray(n_samples_eff) n_features = self.means.shape[1] for k in range(self.n_components): emp_cov = self.covariances[k] mu = np.trace(emp_cov) / n_features alpha = np.mean(emp_cov ** 2) num = alpha + mu ** 2 den = (n_samples_eff[k] + 1.) * (alpha - (mu ** 2) / n_features) shrinkage = 1. if den == 0 else min(num / den, 1.) shrunk_cov = (1. - shrinkage) * emp_cov shrunk_cov.flat[::n_features + 1] += shrinkage * mu self.covariances[k] = shrunk_cov
def condition(self, indices, x)
-
Conditional distribution over given indices.
Parameters
indices
:array-like, shape (n_new_features,)
- Indices of dimensions that we want to condition.
x
:array-like, shape (n_new_features,)
- Values of the features that we know.
Returns
conditional
:GMM
- Conditional GMM distribution p(Y | X=x).
Expand source code
def condition(self, indices, x): """Conditional distribution over given indices. Parameters ---------- indices : array-like, shape (n_new_features,) Indices of dimensions that we want to condition. x : array-like, shape (n_new_features,) Values of the features that we know. Returns ------- conditional : GMM Conditional GMM distribution p(Y | X=x). """ self._check_initialized() indices = np.asarray(indices, dtype=int) x = np.asarray(x) n_features = self.means.shape[1] - len(indices) means = np.empty((self.n_components, n_features)) covariances = np.empty((self.n_components, n_features, n_features)) marginal_norm_factors = np.empty(self.n_components) marginal_prior_exponents = np.empty(self.n_components) for k in range(self.n_components): mvn = MVN(mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state) conditioned = mvn.condition(indices, x) means[k] = conditioned.mean covariances[k] = conditioned.covariance marginal_norm_factors[k], marginal_prior_exponents[k] = \ mvn.marginalize(indices).to_norm_factor_and_exponents(x) priors = _safe_probability_density( self.priors * marginal_norm_factors, marginal_prior_exponents[np.newaxis])[0] return GMM(n_components=self.n_components, priors=priors, means=means, covariances=covariances, random_state=self.random_state)
def extract_mvn(self, component_idx)
-
Extract one of the Gaussians from the mixture.
Parameters
component_idx
:int
- Index of the component that should be extracted.
Returns
mvn
:MVN
- The component_idx-th multivariate normal distribution of this GMM.
Expand source code
def extract_mvn(self, component_idx): """Extract one of the Gaussians from the mixture. Parameters ---------- component_idx : int Index of the component that should be extracted. Returns ------- mvn : MVN The component_idx-th multivariate normal distribution of this GMM. """ self._check_initialized() if component_idx < 0 or component_idx >= self.n_components: raise ValueError("Index of Gaussian must be in [%d, %d)" % (0, self.n_components)) return MVN( mean=self.means[component_idx], covariance=self.covariances[component_idx], verbose=self.verbose, random_state=self.random_state)
def from_samples(self, X, R_diff=0.0001, n_iter=100, init_params='random', oracle_approximating_shrinkage=False)
-
MLE of the mean and covariance.
Expectation-maximization is used to infer the model parameters. The objective function is non-convex. Hence, multiple runs can have different results.
Parameters
X
:array-like, shape (n_samples, n_features)
- Samples from the true distribution.
R_diff
:float
- Minimum allowed difference of responsibilities between successive EM iterations.
n_iter
:int
- Maximum number of iterations.
init_params
:str
, optional(default: 'random')
- Parameter initialization strategy. If means and covariances are given in the constructor, this parameter will have no effect. 'random' will sample initial means randomly from the dataset and set covariances to identity matrices. This is the computationally cheap solution. 'kmeans++' will use k-means++ initialization for means and initialize covariances to diagonal matrices with variances set based on the average distances of samples in each dimensions. This is computationally more expensive but often gives much better results.
oracle_approximating_shrinkage
:bool
, optional(default: False)
- Use Oracle Approximating Shrinkage (OAS) estimator for covariances to ensure positive semi-definiteness.
Returns
self
:GMM
- This object.
Expand source code
def from_samples(self, X, R_diff=1e-4, n_iter=100, init_params="random", oracle_approximating_shrinkage=False): """MLE of the mean and covariance. Expectation-maximization is used to infer the model parameters. The objective function is non-convex. Hence, multiple runs can have different results. Parameters ---------- X : array-like, shape (n_samples, n_features) Samples from the true distribution. R_diff : float Minimum allowed difference of responsibilities between successive EM iterations. n_iter : int Maximum number of iterations. init_params : str, optional (default: 'random') Parameter initialization strategy. If means and covariances are given in the constructor, this parameter will have no effect. 'random' will sample initial means randomly from the dataset and set covariances to identity matrices. This is the computationally cheap solution. 'kmeans++' will use k-means++ initialization for means and initialize covariances to diagonal matrices with variances set based on the average distances of samples in each dimensions. This is computationally more expensive but often gives much better results. oracle_approximating_shrinkage : bool, optional (default: False) Use Oracle Approximating Shrinkage (OAS) estimator for covariances to ensure positive semi-definiteness. Returns ------- self : GMM This object. """ n_samples, n_features = X.shape if self.priors is None: self.priors = np.ones(self.n_components, dtype=float) / self.n_components if init_params not in ["random", "kmeans++"]: raise ValueError("'init_params' must be 'random' or 'kmeans++' " "but is '%s'" % init_params) if self.means is None: if init_params == "random": indices = self.random_state.choice( np.arange(n_samples), self.n_components) self.means = X[indices] else: self.means = kmeansplusplus_initialization( X, self.n_components, self.random_state) if self.covariances is None: if init_params == "random": self.covariances = np.empty( (self.n_components, n_features, n_features)) self.covariances[:] = np.eye(n_features) else: self.covariances = covariance_initialization( X, self.n_components) R = np.zeros((n_samples, self.n_components)) for _ in range(n_iter): R_prev = R # Expectation R = self.to_responsibilities(X) if np.linalg.norm(R - R_prev) < R_diff: if self.verbose: print("EM converged.") break # Maximization w = R.sum(axis=0) + 10.0 * np.finfo(R.dtype).eps R_n = R / w self.priors = w / w.sum() self.means = R_n.T.dot(X) for k in range(self.n_components): Xm = X - self.means[k] self.covariances[k] = (R_n[:, k, np.newaxis] * Xm).T.dot(Xm) if oracle_approximating_shrinkage: n_samples_eff = (np.sum(R_n, axis=0) ** 2 / np.sum(R_n ** 2, axis=0)) self.apply_oracle_approximating_shrinkage(n_samples_eff) return self
def is_in_confidence_region(self, x, alpha)
-
Check if sample is in alpha confidence region.
Check whether the sample lies in the confidence region of the closest MVN according to the Mahalanobis distance.
Parameters
x
:array, shape (n_features,)
- Sample
alpha
:float
- Value between 0 and 1 that defines the probability of the confidence region, e.g., 0.6827 for the 1-sigma confidence region or 0.9545 for the 2-sigma confidence region.
Returns
is_in_confidence_region
:bool
- Is the sample in the alpha confidence region?
Expand source code
def is_in_confidence_region(self, x, alpha): """Check if sample is in alpha confidence region. Check whether the sample lies in the confidence region of the closest MVN according to the Mahalanobis distance. Parameters ---------- x : array, shape (n_features,) Sample alpha : float Value between 0 and 1 that defines the probability of the confidence region, e.g., 0.6827 for the 1-sigma confidence region or 0.9545 for the 2-sigma confidence region. Returns ------- is_in_confidence_region : bool Is the sample in the alpha confidence region? """ self._check_initialized() dists = [MVN(mean=self.means[k], covariance=self.covariances[k] ).squared_mahalanobis_distance(x) for k in range(self.n_components)] # we have one degree of freedom less than number of dimensions n_dof = len(x) - 1 return min(dists) <= chi2(n_dof).ppf(alpha)
def predict(self, indices, X)
-
Predict means of posteriors.
Same as condition() but for multiple samples.
Parameters
indices
:array-like, shape (n_features_1,)
- Indices of dimensions that we want to condition.
X
:array-like, shape (n_samples, n_features_1)
- Values of the features that we know.
Returns
Y
:array, shape (n_samples, n_features_2)
- Predicted means of missing values.
Expand source code
def predict(self, indices, X): """Predict means of posteriors. Same as condition() but for multiple samples. Parameters ---------- indices : array-like, shape (n_features_1,) Indices of dimensions that we want to condition. X : array-like, shape (n_samples, n_features_1) Values of the features that we know. Returns ------- Y : array, shape (n_samples, n_features_2) Predicted means of missing values. """ self._check_initialized() indices = np.asarray(indices, dtype=int) X = np.asarray(X) n_samples = len(X) output_indices = invert_indices(self.means.shape[1], indices) regression_coeffs = np.empty(( self.n_components, len(output_indices), len(indices))) marginal_norm_factors = np.empty(self.n_components) marginal_exponents = np.empty((n_samples, self.n_components)) for k in range(self.n_components): regression_coeffs[k] = regression_coefficients( self.covariances[k], output_indices, indices) mvn = MVN(mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state) marginal_norm_factors[k], marginal_exponents[:, k] = \ mvn.marginalize(indices).to_norm_factor_and_exponents(X) # posterior_means = mean_y + cov_xx^-1 * cov_xy * (x - mean_x) posterior_means = ( self.means[:, output_indices][:, :, np.newaxis].T + np.einsum( "ijk,lik->lji", regression_coeffs, X[:, np.newaxis] - self.means[:, indices])) priors = _safe_probability_density( self.priors * marginal_norm_factors, marginal_exponents) priors = priors.reshape(n_samples, 1, self.n_components) return np.sum(priors * posterior_means, axis=-1)
def sample(self, n_samples)
-
Sample from Gaussian mixture distribution.
Parameters
n_samples
:int
- Number of samples.
Returns
X
:array, shape (n_samples, n_features)
- Samples from the GMM.
Expand source code
def sample(self, n_samples): """Sample from Gaussian mixture distribution. Parameters ---------- n_samples : int Number of samples. Returns ------- X : array, shape (n_samples, n_features) Samples from the GMM. """ self._check_initialized() mvn_indices = self.random_state.choice( self.n_components, size=(n_samples,), p=self.priors) mvn_indices.sort() split_indices = np.hstack( ((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,))) clusters = np.unique(mvn_indices) lens = np.diff(split_indices) samples = np.empty((n_samples, self.means.shape[1])) for i, (k, n_samples) in enumerate(zip(clusters, lens)): samples[split_indices[i]:split_indices[i + 1]] = MVN( mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state).sample(n_samples=n_samples) return samples
def sample_confidence_region(self, n_samples, alpha)
-
Sample from alpha confidence region.
Each MVN is selected with its prior probability and then we sample from the confidence region of the selected MVN.
Parameters
n_samples
:int
- Number of samples.
alpha
:float
- Value between 0 and 1 that defines the probability of the confidence region, e.g., 0.6827 for the 1-sigma confidence region or 0.9545 for the 2-sigma confidence region.
Returns
X
:array, shape (n_samples, n_features)
- Samples from the confidence region.
Expand source code
def sample_confidence_region(self, n_samples, alpha): """Sample from alpha confidence region. Each MVN is selected with its prior probability and then we sample from the confidence region of the selected MVN. Parameters ---------- n_samples : int Number of samples. alpha : float Value between 0 and 1 that defines the probability of the confidence region, e.g., 0.6827 for the 1-sigma confidence region or 0.9545 for the 2-sigma confidence region. Returns ------- X : array, shape (n_samples, n_features) Samples from the confidence region. """ self._check_initialized() mvn_indices = self.random_state.choice( self.n_components, size=(n_samples,), p=self.priors) mvn_indices.sort() split_indices = np.hstack( ((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,))) clusters = np.unique(mvn_indices) lens = np.diff(split_indices) samples = np.empty((n_samples, self.means.shape[1])) for i, (k, n_samples) in enumerate(zip(clusters, lens)): samples[split_indices[i]:split_indices[i + 1]] = MVN( mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state).sample_confidence_region( n_samples=n_samples, alpha=alpha) return samples
def to_ellipses(self, factor=1.0)
-
Compute error ellipses.
An error ellipse shows equiprobable points.
Parameters
factor
:float
- One means standard deviation.
Returns
ellipses
:list
- Parameters that describe the error ellipses of all components: mean and a tuple of angles, widths and heights. Note that widths and heights are semi axes, not diameters.
Expand source code
def to_ellipses(self, factor=1.0): """Compute error ellipses. An error ellipse shows equiprobable points. Parameters ---------- factor : float One means standard deviation. Returns ------- ellipses : list Parameters that describe the error ellipses of all components: mean and a tuple of angles, widths and heights. Note that widths and heights are semi axes, not diameters. """ self._check_initialized() res = [] for k in range(self.n_components): mvn = MVN(mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state) res.append((self.means[k], mvn.to_ellipse(factor))) return res
def to_mvn(self)
-
Collapse to a single Gaussian.
Returns
mvn
:MVN
- Multivariate normal distribution.
Expand source code
def to_mvn(self): """Collapse to a single Gaussian. Returns ------- mvn : MVN Multivariate normal distribution. """ self._check_initialized() mean = np.sum(self.priors[:, np.newaxis] * self.means, 0) assert len(self.covariances) covariance = np.zeros_like(self.covariances[0]) covariance += np.sum(self.priors[:, np.newaxis, np.newaxis] * self.covariances, axis=0) covariance += self.means.T.dot(np.diag(self.priors)).dot(self.means) covariance -= np.outer(mean, mean) return MVN(mean=mean, covariance=covariance, verbose=self.verbose, random_state=self.random_state)
def to_probability_density(self, X)
-
Compute probability density.
Parameters
X
:array-like, shape (n_samples, n_features)
- Data.
Returns
p
:array, shape (n_samples,)
- Probability densities of data.
Expand source code
def to_probability_density(self, X): """Compute probability density. Parameters ---------- X : array-like, shape (n_samples, n_features) Data. Returns ------- p : array, shape (n_samples,) Probability densities of data. """ self._check_initialized() p = [MVN(mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state).to_probability_density(X) for k in range(self.n_components)] return np.dot(self.priors, p)
def to_responsibilities(self, X)
-
Compute responsibilities of each MVN for each sample.
Parameters
X
:array-like, shape (n_samples, n_features)
- Data.
Returns
R
:array, shape (n_samples, n_components)
Expand source code
def to_responsibilities(self, X): """Compute responsibilities of each MVN for each sample. Parameters ---------- X : array-like, shape (n_samples, n_features) Data. Returns ------- R : array, shape (n_samples, n_components) """ self._check_initialized() n_samples = X.shape[0] norm_factors = np.empty(self.n_components) exponents = np.empty((n_samples, self.n_components)) for k in range(self.n_components): norm_factors[k], exponents[:, k] = MVN( mean=self.means[k], covariance=self.covariances[k], random_state=self.random_state).to_norm_factor_and_exponents(X) return _safe_probability_density(self.priors * norm_factors, exponents)