Module gmr.gmm

Expand source code
import numpy as np
from scipy.spatial.distance import cdist, pdist
from scipy.stats import chi2
from .utils import check_random_state
from .mvn import MVN, invert_indices, regression_coefficients


def kmeansplusplus_initialization(X, n_components, random_state=None):
    """k-means++ initialization for centers of a GMM.

    Initialization of GMM centers before expectation maximization (EM).
    The first center is selected uniformly random. Subsequent centers are
    sampled from the data with probability proportional to the squared
    distance to the closest center.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Samples from the true distribution.

    n_components : int (> 0)
        Number of MVNs that compose the GMM.

    random_state : int or RandomState, optional (default: global random state)
        If an integer is given, it fixes the seed. Defaults to the global numpy
        random number generator.

    Returns
    -------
    initial_means : array, shape (n_components, n_features)
        Initial means
    """
    if n_components <= 0:
        raise ValueError("Only n_components > 0 allowed.")
    if n_components > len(X):
        raise ValueError(
            "More components (%d) than samples (%d) are not allowed."
            % (n_components, len(X)))

    random_state = check_random_state(random_state)

    all_indices = np.arange(len(X))
    selected_centers = [random_state.choice(all_indices, size=1).tolist()[0]]
    while len(selected_centers) < n_components:
        centers = np.atleast_2d(X[np.array(selected_centers, dtype=int)])
        i = _select_next_center(X, centers, random_state, selected_centers, all_indices)
        selected_centers.append(i)
    return X[np.array(selected_centers, dtype=int)]


def _select_next_center(X, centers, random_state, excluded_indices,
                        all_indices):
    """Sample with probability proportional to the squared distance to closest center."""
    squared_distances = cdist(X, centers, metric="sqeuclidean")
    selection_probability = squared_distances.max(axis=1)
    selection_probability[np.array(excluded_indices, dtype=int)] = 0.0
    selection_probability /= np.sum(selection_probability)
    return random_state.choice(all_indices, size=1, p=selection_probability)[0]


def covariance_initialization(X, n_components):
    """Initialize covariances.

    The standard deviation in each dimension is set to the average Euclidean
    distance of the training samples divided by the number of components.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Samples from the true distribution.

    n_components : int (> 0)
        Number of MVNs that compose the GMM.

    Returns
    -------
    initial_covariances : array, shape (n_components, n_features, n_features)
        Initial covariances
    """
    if n_components <= 0:
        raise ValueError(
            "It does not make sense to initialize 0 or fewer covariances.")
    n_features = X.shape[1]
    average_distances = np.empty(n_features)
    for i in range(n_features):
        average_distances[i] = np.mean(
            pdist(X[:, i, np.newaxis], metric="euclidean"))
    initial_covariances = np.empty((n_components, n_features, n_features))
    initial_covariances[:] = (np.eye(n_features) *
                              (average_distances / n_components) ** 2)
    return initial_covariances


class GMM(object):
    """Gaussian Mixture Model.

    Parameters
    ----------
    n_components : int
        Number of MVNs that compose the GMM.

    priors : array-like, shape (n_components,), optional
        Weights of the components.

    means : array-like, shape (n_components, n_features), optional
        Means of the components.

    covariances : array-like, shape (n_components, n_features, n_features), optional
        Covariances of the components.

    verbose : int, optional (default: 0)
        Verbosity level.

    random_state : int or RandomState, optional (default: global random state)
        If an integer is given, it fixes the seed. Defaults to the global numpy
        random number generator.
    """
    def __init__(self, n_components, priors=None, means=None, covariances=None,
                 verbose=0, random_state=None):
        self.n_components = n_components
        self.priors = priors
        self.means = means
        self.covariances = covariances
        self.verbose = verbose
        self.random_state = check_random_state(random_state)

        if self.priors is not None:
            self.priors = np.asarray(self.priors)
        if self.means is not None:
            self.means = np.asarray(self.means)
        if self.covariances is not None:
            self.covariances = np.asarray(self.covariances)

    def _check_initialized(self):
        if self.priors is None:
            raise ValueError("Priors have not been initialized")
        if self.means is None:
            raise ValueError("Means have not been initialized")
        if self.covariances is None:
            raise ValueError("Covariances have not been initialized")

    def from_samples(self, X, R_diff=1e-4, n_iter=100, init_params="random",
                     oracle_approximating_shrinkage=False):
        """MLE of the mean and covariance.

        Expectation-maximization is used to infer the model parameters. The
        objective function is non-convex. Hence, multiple runs can have
        different results.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Samples from the true distribution.

        R_diff : float
            Minimum allowed difference of responsibilities between successive
            EM iterations.

        n_iter : int
            Maximum number of iterations.

        init_params : str, optional (default: 'random')
            Parameter initialization strategy. If means and covariances are
            given in the constructor, this parameter will have no effect.
            'random' will sample initial means randomly from the dataset
            and set covariances to identity matrices. This is the
            computationally cheap solution.
            'kmeans++' will use k-means++ initialization for means and
            initialize covariances to diagonal matrices with variances
            set based on the average distances of samples in each dimensions.
            This is computationally more expensive but often gives much
            better results.

        oracle_approximating_shrinkage : bool, optional (default: False)
            Use Oracle Approximating Shrinkage (OAS) estimator for covariances
            to ensure positive semi-definiteness.

        Returns
        -------
        self : GMM
            This object.
        """
        n_samples, n_features = X.shape

        if self.priors is None:
            self.priors = np.ones(self.n_components,
                                  dtype=float) / self.n_components

        if init_params not in ["random", "kmeans++"]:
            raise ValueError("'init_params' must be 'random' or 'kmeans++' "
                             "but is '%s'" % init_params)

        if self.means is None:
            if init_params == "random":
                indices = self.random_state.choice(
                    np.arange(n_samples), self.n_components)
                self.means = X[indices]
            else:
                self.means = kmeansplusplus_initialization(
                    X, self.n_components, self.random_state)

        if self.covariances is None:
            if init_params == "random":
                self.covariances = np.empty(
                    (self.n_components, n_features, n_features))
                self.covariances[:] = np.eye(n_features)
            else:
                self.covariances = covariance_initialization(
                    X, self.n_components)

        R = np.zeros((n_samples, self.n_components))
        for _ in range(n_iter):
            R_prev = R

            # Expectation
            R = self.to_responsibilities(X)

            if np.linalg.norm(R - R_prev) < R_diff:
                if self.verbose:
                    print("EM converged.")
                break

            # Maximization
            w = R.sum(axis=0) + 10.0 * np.finfo(R.dtype).eps
            R_n = R / w
            self.priors = w / w.sum()
            self.means = R_n.T.dot(X)
            for k in range(self.n_components):
                Xm = X - self.means[k]
                self.covariances[k] = (R_n[:, k, np.newaxis] * Xm).T.dot(Xm)

            if oracle_approximating_shrinkage:
                n_samples_eff = (np.sum(R_n, axis=0) ** 2 /
                                 np.sum(R_n ** 2, axis=0))
                self.apply_oracle_approximating_shrinkage(n_samples_eff)

        return self

    def apply_oracle_approximating_shrinkage(self, n_samples_eff):
        """Apply Oracle Approximating Shrinkage to covariances.

        Empirical covariances might have negative eigenvalues caused by
        numerical issues so that they are not positive semi-definite and
        are not invertible. In these cases it is better to apply this
        function after training. You can also apply it after each
        EM step with a flag of `GMM.from_samples`.

        This is an implementation of

        Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”,
        IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

        based on the implementation of scikit-learn:

        https://scikit-learn.org/stable/modules/generated/oas-function.html#sklearn.covariance.oas

        Parameters
        ----------
        n_samples_eff : float or array-like, shape (n_components,)
            Number of effective samples from which the covariances have been
            estimated. A rough estimate would be the size of the dataset.
            Covariances are computed from a weighted dataset in EM. In this
            case we can compute the number of effective samples by
            `np.sum(weights, axis=0) ** 2 / np.sum(weights ** 2, axis=0)`
            from an array weights of shape (n_samples, n_components).
        """
        self._check_initialized()
        n_samples_eff = np.ones(self.n_components) * np.asarray(n_samples_eff)

        n_features = self.means.shape[1]
        for k in range(self.n_components):
            emp_cov = self.covariances[k]
            mu = np.trace(emp_cov) / n_features
            alpha = np.mean(emp_cov ** 2)
            num = alpha + mu ** 2
            den = (n_samples_eff[k] + 1.) * (alpha - (mu ** 2) / n_features)

            shrinkage = 1. if den == 0 else min(num / den, 1.)
            shrunk_cov = (1. - shrinkage) * emp_cov
            shrunk_cov.flat[::n_features + 1] += shrinkage * mu

            self.covariances[k] = shrunk_cov

    def sample(self, n_samples):
        """Sample from Gaussian mixture distribution.

        Parameters
        ----------
        n_samples : int
            Number of samples.

        Returns
        -------
        X : array, shape (n_samples, n_features)
            Samples from the GMM.
        """
        self._check_initialized()

        mvn_indices = self.random_state.choice(
            self.n_components, size=(n_samples,), p=self.priors)
        mvn_indices.sort()
        split_indices = np.hstack(
            ((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,)))
        clusters = np.unique(mvn_indices)
        lens = np.diff(split_indices)
        samples = np.empty((n_samples, self.means.shape[1]))
        for i, (k, n_samples) in enumerate(zip(clusters, lens)):
            samples[split_indices[i]:split_indices[i + 1]] = MVN(
                mean=self.means[k], covariance=self.covariances[k],
                random_state=self.random_state).sample(n_samples=n_samples)
        return samples

    def sample_confidence_region(self, n_samples, alpha):
        """Sample from alpha confidence region.

        Each MVN is selected with its prior probability and then we
        sample from the confidence region of the selected MVN.

        Parameters
        ----------
        n_samples : int
            Number of samples.

        alpha : float
            Value between 0 and 1 that defines the probability of the
            confidence region, e.g., 0.6827 for the 1-sigma confidence
            region or 0.9545 for the 2-sigma confidence region.

        Returns
        -------
        X : array, shape (n_samples, n_features)
            Samples from the confidence region.
        """
        self._check_initialized()

        mvn_indices = self.random_state.choice(
            self.n_components, size=(n_samples,), p=self.priors)
        mvn_indices.sort()
        split_indices = np.hstack(
            ((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,)))
        clusters = np.unique(mvn_indices)
        lens = np.diff(split_indices)
        samples = np.empty((n_samples, self.means.shape[1]))
        for i, (k, n_samples) in enumerate(zip(clusters, lens)):
            samples[split_indices[i]:split_indices[i + 1]] = MVN(
                mean=self.means[k], covariance=self.covariances[k],
                random_state=self.random_state).sample_confidence_region(
                n_samples=n_samples, alpha=alpha)
        return samples

    def is_in_confidence_region(self, x, alpha):
        """Check if sample is in alpha confidence region.

        Check whether the sample lies in the confidence region of the closest
        MVN according to the Mahalanobis distance.

        Parameters
        ----------
        x : array, shape (n_features,)
            Sample

        alpha : float
            Value between 0 and 1 that defines the probability of the
            confidence region, e.g., 0.6827 for the 1-sigma confidence
            region or 0.9545 for the 2-sigma confidence region.

        Returns
        -------
        is_in_confidence_region : bool
            Is the sample in the alpha confidence region?
        """
        self._check_initialized()
        dists = [MVN(mean=self.means[k], covariance=self.covariances[k]
                     ).squared_mahalanobis_distance(x)
                 for k in range(self.n_components)]
        # we have one degree of freedom less than number of dimensions
        n_dof = len(x) - 1
        return min(dists) <= chi2(n_dof).ppf(alpha)

    def to_responsibilities(self, X):
        """Compute responsibilities of each MVN for each sample.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Data.

        Returns
        -------
        R : array, shape (n_samples, n_components)
        """
        self._check_initialized()

        n_samples = X.shape[0]

        norm_factors = np.empty(self.n_components)
        exponents = np.empty((n_samples, self.n_components))

        for k in range(self.n_components):
            norm_factors[k], exponents[:, k] = MVN(
                mean=self.means[k], covariance=self.covariances[k],
                random_state=self.random_state).to_norm_factor_and_exponents(X)

        return _safe_probability_density(self.priors * norm_factors, exponents)

    def to_probability_density(self, X):
        """Compute probability density.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Data.

        Returns
        -------
        p : array, shape (n_samples,)
            Probability densities of data.
        """
        self._check_initialized()

        p = [MVN(mean=self.means[k], covariance=self.covariances[k],
                 random_state=self.random_state).to_probability_density(X)
             for k in range(self.n_components)]
        return np.dot(self.priors, p)

    def condition(self, indices, x):
        """Conditional distribution over given indices.

        Parameters
        ----------
        indices : array-like, shape (n_new_features,)
            Indices of dimensions that we want to condition.

        x : array-like, shape (n_new_features,)
            Values of the features that we know.

        Returns
        -------
        conditional : GMM
            Conditional GMM distribution p(Y | X=x).
        """
        self._check_initialized()

        indices = np.asarray(indices, dtype=int)
        x = np.asarray(x)

        n_features = self.means.shape[1] - len(indices)
        means = np.empty((self.n_components, n_features))
        covariances = np.empty((self.n_components, n_features, n_features))

        marginal_norm_factors = np.empty(self.n_components)
        marginal_prior_exponents = np.empty(self.n_components)

        for k in range(self.n_components):
            mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
                      random_state=self.random_state)
            conditioned = mvn.condition(indices, x)
            means[k] = conditioned.mean
            covariances[k] = conditioned.covariance

            marginal_norm_factors[k], marginal_prior_exponents[k] = \
                mvn.marginalize(indices).to_norm_factor_and_exponents(x)

        priors = _safe_probability_density(
            self.priors * marginal_norm_factors,
            marginal_prior_exponents[np.newaxis])[0]

        return GMM(n_components=self.n_components, priors=priors, means=means,
                   covariances=covariances, random_state=self.random_state)

    def predict(self, indices, X):
        """Predict means of posteriors.

        Same as condition() but for multiple samples.

        Parameters
        ----------
        indices : array-like, shape (n_features_1,)
            Indices of dimensions that we want to condition.

        X : array-like, shape (n_samples, n_features_1)
            Values of the features that we know.

        Returns
        -------
        Y : array, shape (n_samples, n_features_2)
            Predicted means of missing values.
        """
        self._check_initialized()

        indices = np.asarray(indices, dtype=int)
        X = np.asarray(X)

        n_samples = len(X)
        output_indices = invert_indices(self.means.shape[1], indices)
        regression_coeffs = np.empty((
            self.n_components, len(output_indices), len(indices)))

        marginal_norm_factors = np.empty(self.n_components)
        marginal_exponents = np.empty((n_samples, self.n_components))

        for k in range(self.n_components):
            regression_coeffs[k] = regression_coefficients(
                self.covariances[k], output_indices, indices)
            mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
                      random_state=self.random_state)
            marginal_norm_factors[k], marginal_exponents[:, k] = \
                mvn.marginalize(indices).to_norm_factor_and_exponents(X)

        # posterior_means = mean_y + cov_xx^-1 * cov_xy * (x - mean_x)
        posterior_means = (
                self.means[:, output_indices][:, :, np.newaxis].T +
                np.einsum(
                    "ijk,lik->lji",
                    regression_coeffs,
                    X[:, np.newaxis] - self.means[:, indices]))

        priors = _safe_probability_density(
            self.priors * marginal_norm_factors, marginal_exponents)
        priors = priors.reshape(n_samples, 1, self.n_components)
        return np.sum(priors * posterior_means, axis=-1)

    def to_ellipses(self, factor=1.0):
        """Compute error ellipses.

        An error ellipse shows equiprobable points.

        Parameters
        ----------
        factor : float
            One means standard deviation.

        Returns
        -------
        ellipses : list
            Parameters that describe the error ellipses of all components:
            mean and a tuple of angles, widths and heights. Note that widths
            and heights are semi axes, not diameters.
        """
        self._check_initialized()

        res = []
        for k in range(self.n_components):
            mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
                      random_state=self.random_state)
            res.append((self.means[k], mvn.to_ellipse(factor)))
        return res

    def to_mvn(self):
        """Collapse to a single Gaussian.

        Returns
        -------
        mvn : MVN
            Multivariate normal distribution.
        """
        self._check_initialized()

        mean = np.sum(self.priors[:, np.newaxis] * self.means, 0)
        assert len(self.covariances)
        covariance = np.zeros_like(self.covariances[0])
        covariance += np.sum(self.priors[:, np.newaxis, np.newaxis] * self.covariances, axis=0)
        covariance += self.means.T.dot(np.diag(self.priors)).dot(self.means)
        covariance -= np.outer(mean, mean)
        return MVN(mean=mean, covariance=covariance,
                   verbose=self.verbose, random_state=self.random_state)

    def extract_mvn(self, component_idx):
        """Extract one of the Gaussians from the mixture.

        Parameters
        ----------
        component_idx : int
            Index of the component that should be extracted.

        Returns
        -------
        mvn : MVN
            The component_idx-th multivariate normal distribution of this GMM.
        """
        self._check_initialized()
        if component_idx < 0 or component_idx >= self.n_components:
            raise ValueError("Index of Gaussian must be in [%d, %d)"
                             % (0, self.n_components))
        return MVN(
            mean=self.means[component_idx],
            covariance=self.covariances[component_idx], verbose=self.verbose,
            random_state=self.random_state)


def plot_error_ellipses(ax, gmm, colors=None, alpha=0.25, factors=np.linspace(0.25, 2.0, 8)):
    """Plot error ellipses of GMM components.

    Parameters
    ----------
    ax : axis
        Matplotlib axis.

    gmm : GMM
        Gaussian mixture model.

    colors : list of str, optional (default: None)
        Colors in which the ellipses should be plotted

    alpha : int, optional (default: 0.25)
        Alpha value for ellipses

    factors : array, optional (default: np.linspace(0.25, 2.0, 8))
        Multiples of the standard deviations that should be plotted.
    """
    from matplotlib.patches import Ellipse
    from itertools import cycle
    if colors is not None:
        colors = cycle(colors)
    for factor in factors:
        for mean, (angle, width, height) in gmm.to_ellipses(factor):
            ell = Ellipse(xy=mean, width=2.0 * width, height=2.0 * height,
                          angle=np.degrees(angle))
            ell.set_alpha(alpha)
            if colors is not None:
                ell.set_color(next(colors))
            ax.add_artist(ell)


def _safe_probability_density(norm_factors, exponents):
    """Compute numerically safe probability densities of a GMM.

    The probability density of individual Gaussians in a GMM can be computed
    from a formula of the form
    q_k(X=x) = p_k(X=x) / sum_l p_l(X=x)
    where p_k(X=x) = c_k * exp(exponent_k) so that
    q_k(X=x) = c_k * exp(exponent_k) / sum_l c_l * exp(exponent_l)
    Instead of using computing this directly, we implement it in a numerically
    more stable version that works better for very small or large exponents
    that would otherwise lead to NaN or division by 0.
    The following expression is mathematically equal for any constant m:
    q_k(X=x) = c_k * exp(exponent_k - m) / sum_l c_l * exp(exponent_l - m),
    where we set m = max_l exponents_l.

    Parameters
    ----------
    norm_factors : array, shape (n_components,)
        Normalization factors of individual Gaussians

    exponents : array, shape (n_samples, n_components)
        Exponents of each combination of Gaussian and sample

    Returns
    -------
    p : array, shape (n_samples, n_components)
        Probability density of each sample
    """
    m = np.max(exponents, axis=1)[:, np.newaxis]
    p = norm_factors[np.newaxis] * np.exp(exponents - m)
    p /= np.sum(p, axis=1)[:, np.newaxis]
    return p

Functions

def covariance_initialization(X, n_components)

Initialize covariances.

The standard deviation in each dimension is set to the average Euclidean distance of the training samples divided by the number of components.

Parameters

X : array-like, shape (n_samples, n_features)
Samples from the true distribution.
n_components : int (> 0)
Number of MVNs that compose the GMM.

Returns

initial_covariances : array, shape (n_components, n_features, n_features)
Initial covariances
Expand source code
def covariance_initialization(X, n_components):
    """Initialize covariances.

    The standard deviation in each dimension is set to the average Euclidean
    distance of the training samples divided by the number of components.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Samples from the true distribution.

    n_components : int (> 0)
        Number of MVNs that compose the GMM.

    Returns
    -------
    initial_covariances : array, shape (n_components, n_features, n_features)
        Initial covariances
    """
    if n_components <= 0:
        raise ValueError(
            "It does not make sense to initialize 0 or fewer covariances.")
    n_features = X.shape[1]
    average_distances = np.empty(n_features)
    for i in range(n_features):
        average_distances[i] = np.mean(
            pdist(X[:, i, np.newaxis], metric="euclidean"))
    initial_covariances = np.empty((n_components, n_features, n_features))
    initial_covariances[:] = (np.eye(n_features) *
                              (average_distances / n_components) ** 2)
    return initial_covariances
def kmeansplusplus_initialization(X, n_components, random_state=None)

k-means++ initialization for centers of a GMM.

Initialization of GMM centers before expectation maximization (EM). The first center is selected uniformly random. Subsequent centers are sampled from the data with probability proportional to the squared distance to the closest center.

Parameters

X : array-like, shape (n_samples, n_features)
Samples from the true distribution.
n_components : int (> 0)
Number of MVNs that compose the GMM.
random_state : int or RandomState, optional (default: global random state)
If an integer is given, it fixes the seed. Defaults to the global numpy random number generator.

Returns

initial_means : array, shape (n_components, n_features)
Initial means
Expand source code
def kmeansplusplus_initialization(X, n_components, random_state=None):
    """k-means++ initialization for centers of a GMM.

    Initialization of GMM centers before expectation maximization (EM).
    The first center is selected uniformly random. Subsequent centers are
    sampled from the data with probability proportional to the squared
    distance to the closest center.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Samples from the true distribution.

    n_components : int (> 0)
        Number of MVNs that compose the GMM.

    random_state : int or RandomState, optional (default: global random state)
        If an integer is given, it fixes the seed. Defaults to the global numpy
        random number generator.

    Returns
    -------
    initial_means : array, shape (n_components, n_features)
        Initial means
    """
    if n_components <= 0:
        raise ValueError("Only n_components > 0 allowed.")
    if n_components > len(X):
        raise ValueError(
            "More components (%d) than samples (%d) are not allowed."
            % (n_components, len(X)))

    random_state = check_random_state(random_state)

    all_indices = np.arange(len(X))
    selected_centers = [random_state.choice(all_indices, size=1).tolist()[0]]
    while len(selected_centers) < n_components:
        centers = np.atleast_2d(X[np.array(selected_centers, dtype=int)])
        i = _select_next_center(X, centers, random_state, selected_centers, all_indices)
        selected_centers.append(i)
    return X[np.array(selected_centers, dtype=int)]
def plot_error_ellipses(ax, gmm, colors=None, alpha=0.25, factors=array([0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2. ]))

Plot error ellipses of GMM components.

Parameters

ax : axis
Matplotlib axis.
gmm : GMM
Gaussian mixture model.
colors : list of str, optional (default: None)
Colors in which the ellipses should be plotted
alpha : int, optional (default: 0.25)
Alpha value for ellipses
factors : array, optional (default: np.linspace(0.25, 2.0, 8))
Multiples of the standard deviations that should be plotted.
Expand source code
def plot_error_ellipses(ax, gmm, colors=None, alpha=0.25, factors=np.linspace(0.25, 2.0, 8)):
    """Plot error ellipses of GMM components.

    Parameters
    ----------
    ax : axis
        Matplotlib axis.

    gmm : GMM
        Gaussian mixture model.

    colors : list of str, optional (default: None)
        Colors in which the ellipses should be plotted

    alpha : int, optional (default: 0.25)
        Alpha value for ellipses

    factors : array, optional (default: np.linspace(0.25, 2.0, 8))
        Multiples of the standard deviations that should be plotted.
    """
    from matplotlib.patches import Ellipse
    from itertools import cycle
    if colors is not None:
        colors = cycle(colors)
    for factor in factors:
        for mean, (angle, width, height) in gmm.to_ellipses(factor):
            ell = Ellipse(xy=mean, width=2.0 * width, height=2.0 * height,
                          angle=np.degrees(angle))
            ell.set_alpha(alpha)
            if colors is not None:
                ell.set_color(next(colors))
            ax.add_artist(ell)

Classes

class GMM (n_components, priors=None, means=None, covariances=None, verbose=0, random_state=None)

Gaussian Mixture Model.

Parameters

n_components : int
Number of MVNs that compose the GMM.
priors : array-like, shape (n_components,), optional
Weights of the components.
means : array-like, shape (n_components, n_features), optional
Means of the components.
covariances : array-like, shape (n_components, n_features, n_features), optional
Covariances of the components.
verbose : int, optional (default: 0)
Verbosity level.
random_state : int or RandomState, optional (default: global random state)
If an integer is given, it fixes the seed. Defaults to the global numpy random number generator.
Expand source code
class GMM(object):
    """Gaussian Mixture Model.

    Parameters
    ----------
    n_components : int
        Number of MVNs that compose the GMM.

    priors : array-like, shape (n_components,), optional
        Weights of the components.

    means : array-like, shape (n_components, n_features), optional
        Means of the components.

    covariances : array-like, shape (n_components, n_features, n_features), optional
        Covariances of the components.

    verbose : int, optional (default: 0)
        Verbosity level.

    random_state : int or RandomState, optional (default: global random state)
        If an integer is given, it fixes the seed. Defaults to the global numpy
        random number generator.
    """
    def __init__(self, n_components, priors=None, means=None, covariances=None,
                 verbose=0, random_state=None):
        self.n_components = n_components
        self.priors = priors
        self.means = means
        self.covariances = covariances
        self.verbose = verbose
        self.random_state = check_random_state(random_state)

        if self.priors is not None:
            self.priors = np.asarray(self.priors)
        if self.means is not None:
            self.means = np.asarray(self.means)
        if self.covariances is not None:
            self.covariances = np.asarray(self.covariances)

    def _check_initialized(self):
        if self.priors is None:
            raise ValueError("Priors have not been initialized")
        if self.means is None:
            raise ValueError("Means have not been initialized")
        if self.covariances is None:
            raise ValueError("Covariances have not been initialized")

    def from_samples(self, X, R_diff=1e-4, n_iter=100, init_params="random",
                     oracle_approximating_shrinkage=False):
        """MLE of the mean and covariance.

        Expectation-maximization is used to infer the model parameters. The
        objective function is non-convex. Hence, multiple runs can have
        different results.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Samples from the true distribution.

        R_diff : float
            Minimum allowed difference of responsibilities between successive
            EM iterations.

        n_iter : int
            Maximum number of iterations.

        init_params : str, optional (default: 'random')
            Parameter initialization strategy. If means and covariances are
            given in the constructor, this parameter will have no effect.
            'random' will sample initial means randomly from the dataset
            and set covariances to identity matrices. This is the
            computationally cheap solution.
            'kmeans++' will use k-means++ initialization for means and
            initialize covariances to diagonal matrices with variances
            set based on the average distances of samples in each dimensions.
            This is computationally more expensive but often gives much
            better results.

        oracle_approximating_shrinkage : bool, optional (default: False)
            Use Oracle Approximating Shrinkage (OAS) estimator for covariances
            to ensure positive semi-definiteness.

        Returns
        -------
        self : GMM
            This object.
        """
        n_samples, n_features = X.shape

        if self.priors is None:
            self.priors = np.ones(self.n_components,
                                  dtype=float) / self.n_components

        if init_params not in ["random", "kmeans++"]:
            raise ValueError("'init_params' must be 'random' or 'kmeans++' "
                             "but is '%s'" % init_params)

        if self.means is None:
            if init_params == "random":
                indices = self.random_state.choice(
                    np.arange(n_samples), self.n_components)
                self.means = X[indices]
            else:
                self.means = kmeansplusplus_initialization(
                    X, self.n_components, self.random_state)

        if self.covariances is None:
            if init_params == "random":
                self.covariances = np.empty(
                    (self.n_components, n_features, n_features))
                self.covariances[:] = np.eye(n_features)
            else:
                self.covariances = covariance_initialization(
                    X, self.n_components)

        R = np.zeros((n_samples, self.n_components))
        for _ in range(n_iter):
            R_prev = R

            # Expectation
            R = self.to_responsibilities(X)

            if np.linalg.norm(R - R_prev) < R_diff:
                if self.verbose:
                    print("EM converged.")
                break

            # Maximization
            w = R.sum(axis=0) + 10.0 * np.finfo(R.dtype).eps
            R_n = R / w
            self.priors = w / w.sum()
            self.means = R_n.T.dot(X)
            for k in range(self.n_components):
                Xm = X - self.means[k]
                self.covariances[k] = (R_n[:, k, np.newaxis] * Xm).T.dot(Xm)

            if oracle_approximating_shrinkage:
                n_samples_eff = (np.sum(R_n, axis=0) ** 2 /
                                 np.sum(R_n ** 2, axis=0))
                self.apply_oracle_approximating_shrinkage(n_samples_eff)

        return self

    def apply_oracle_approximating_shrinkage(self, n_samples_eff):
        """Apply Oracle Approximating Shrinkage to covariances.

        Empirical covariances might have negative eigenvalues caused by
        numerical issues so that they are not positive semi-definite and
        are not invertible. In these cases it is better to apply this
        function after training. You can also apply it after each
        EM step with a flag of `GMM.from_samples`.

        This is an implementation of

        Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”,
        IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

        based on the implementation of scikit-learn:

        https://scikit-learn.org/stable/modules/generated/oas-function.html#sklearn.covariance.oas

        Parameters
        ----------
        n_samples_eff : float or array-like, shape (n_components,)
            Number of effective samples from which the covariances have been
            estimated. A rough estimate would be the size of the dataset.
            Covariances are computed from a weighted dataset in EM. In this
            case we can compute the number of effective samples by
            `np.sum(weights, axis=0) ** 2 / np.sum(weights ** 2, axis=0)`
            from an array weights of shape (n_samples, n_components).
        """
        self._check_initialized()
        n_samples_eff = np.ones(self.n_components) * np.asarray(n_samples_eff)

        n_features = self.means.shape[1]
        for k in range(self.n_components):
            emp_cov = self.covariances[k]
            mu = np.trace(emp_cov) / n_features
            alpha = np.mean(emp_cov ** 2)
            num = alpha + mu ** 2
            den = (n_samples_eff[k] + 1.) * (alpha - (mu ** 2) / n_features)

            shrinkage = 1. if den == 0 else min(num / den, 1.)
            shrunk_cov = (1. - shrinkage) * emp_cov
            shrunk_cov.flat[::n_features + 1] += shrinkage * mu

            self.covariances[k] = shrunk_cov

    def sample(self, n_samples):
        """Sample from Gaussian mixture distribution.

        Parameters
        ----------
        n_samples : int
            Number of samples.

        Returns
        -------
        X : array, shape (n_samples, n_features)
            Samples from the GMM.
        """
        self._check_initialized()

        mvn_indices = self.random_state.choice(
            self.n_components, size=(n_samples,), p=self.priors)
        mvn_indices.sort()
        split_indices = np.hstack(
            ((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,)))
        clusters = np.unique(mvn_indices)
        lens = np.diff(split_indices)
        samples = np.empty((n_samples, self.means.shape[1]))
        for i, (k, n_samples) in enumerate(zip(clusters, lens)):
            samples[split_indices[i]:split_indices[i + 1]] = MVN(
                mean=self.means[k], covariance=self.covariances[k],
                random_state=self.random_state).sample(n_samples=n_samples)
        return samples

    def sample_confidence_region(self, n_samples, alpha):
        """Sample from alpha confidence region.

        Each MVN is selected with its prior probability and then we
        sample from the confidence region of the selected MVN.

        Parameters
        ----------
        n_samples : int
            Number of samples.

        alpha : float
            Value between 0 and 1 that defines the probability of the
            confidence region, e.g., 0.6827 for the 1-sigma confidence
            region or 0.9545 for the 2-sigma confidence region.

        Returns
        -------
        X : array, shape (n_samples, n_features)
            Samples from the confidence region.
        """
        self._check_initialized()

        mvn_indices = self.random_state.choice(
            self.n_components, size=(n_samples,), p=self.priors)
        mvn_indices.sort()
        split_indices = np.hstack(
            ((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,)))
        clusters = np.unique(mvn_indices)
        lens = np.diff(split_indices)
        samples = np.empty((n_samples, self.means.shape[1]))
        for i, (k, n_samples) in enumerate(zip(clusters, lens)):
            samples[split_indices[i]:split_indices[i + 1]] = MVN(
                mean=self.means[k], covariance=self.covariances[k],
                random_state=self.random_state).sample_confidence_region(
                n_samples=n_samples, alpha=alpha)
        return samples

    def is_in_confidence_region(self, x, alpha):
        """Check if sample is in alpha confidence region.

        Check whether the sample lies in the confidence region of the closest
        MVN according to the Mahalanobis distance.

        Parameters
        ----------
        x : array, shape (n_features,)
            Sample

        alpha : float
            Value between 0 and 1 that defines the probability of the
            confidence region, e.g., 0.6827 for the 1-sigma confidence
            region or 0.9545 for the 2-sigma confidence region.

        Returns
        -------
        is_in_confidence_region : bool
            Is the sample in the alpha confidence region?
        """
        self._check_initialized()
        dists = [MVN(mean=self.means[k], covariance=self.covariances[k]
                     ).squared_mahalanobis_distance(x)
                 for k in range(self.n_components)]
        # we have one degree of freedom less than number of dimensions
        n_dof = len(x) - 1
        return min(dists) <= chi2(n_dof).ppf(alpha)

    def to_responsibilities(self, X):
        """Compute responsibilities of each MVN for each sample.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Data.

        Returns
        -------
        R : array, shape (n_samples, n_components)
        """
        self._check_initialized()

        n_samples = X.shape[0]

        norm_factors = np.empty(self.n_components)
        exponents = np.empty((n_samples, self.n_components))

        for k in range(self.n_components):
            norm_factors[k], exponents[:, k] = MVN(
                mean=self.means[k], covariance=self.covariances[k],
                random_state=self.random_state).to_norm_factor_and_exponents(X)

        return _safe_probability_density(self.priors * norm_factors, exponents)

    def to_probability_density(self, X):
        """Compute probability density.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            Data.

        Returns
        -------
        p : array, shape (n_samples,)
            Probability densities of data.
        """
        self._check_initialized()

        p = [MVN(mean=self.means[k], covariance=self.covariances[k],
                 random_state=self.random_state).to_probability_density(X)
             for k in range(self.n_components)]
        return np.dot(self.priors, p)

    def condition(self, indices, x):
        """Conditional distribution over given indices.

        Parameters
        ----------
        indices : array-like, shape (n_new_features,)
            Indices of dimensions that we want to condition.

        x : array-like, shape (n_new_features,)
            Values of the features that we know.

        Returns
        -------
        conditional : GMM
            Conditional GMM distribution p(Y | X=x).
        """
        self._check_initialized()

        indices = np.asarray(indices, dtype=int)
        x = np.asarray(x)

        n_features = self.means.shape[1] - len(indices)
        means = np.empty((self.n_components, n_features))
        covariances = np.empty((self.n_components, n_features, n_features))

        marginal_norm_factors = np.empty(self.n_components)
        marginal_prior_exponents = np.empty(self.n_components)

        for k in range(self.n_components):
            mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
                      random_state=self.random_state)
            conditioned = mvn.condition(indices, x)
            means[k] = conditioned.mean
            covariances[k] = conditioned.covariance

            marginal_norm_factors[k], marginal_prior_exponents[k] = \
                mvn.marginalize(indices).to_norm_factor_and_exponents(x)

        priors = _safe_probability_density(
            self.priors * marginal_norm_factors,
            marginal_prior_exponents[np.newaxis])[0]

        return GMM(n_components=self.n_components, priors=priors, means=means,
                   covariances=covariances, random_state=self.random_state)

    def predict(self, indices, X):
        """Predict means of posteriors.

        Same as condition() but for multiple samples.

        Parameters
        ----------
        indices : array-like, shape (n_features_1,)
            Indices of dimensions that we want to condition.

        X : array-like, shape (n_samples, n_features_1)
            Values of the features that we know.

        Returns
        -------
        Y : array, shape (n_samples, n_features_2)
            Predicted means of missing values.
        """
        self._check_initialized()

        indices = np.asarray(indices, dtype=int)
        X = np.asarray(X)

        n_samples = len(X)
        output_indices = invert_indices(self.means.shape[1], indices)
        regression_coeffs = np.empty((
            self.n_components, len(output_indices), len(indices)))

        marginal_norm_factors = np.empty(self.n_components)
        marginal_exponents = np.empty((n_samples, self.n_components))

        for k in range(self.n_components):
            regression_coeffs[k] = regression_coefficients(
                self.covariances[k], output_indices, indices)
            mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
                      random_state=self.random_state)
            marginal_norm_factors[k], marginal_exponents[:, k] = \
                mvn.marginalize(indices).to_norm_factor_and_exponents(X)

        # posterior_means = mean_y + cov_xx^-1 * cov_xy * (x - mean_x)
        posterior_means = (
                self.means[:, output_indices][:, :, np.newaxis].T +
                np.einsum(
                    "ijk,lik->lji",
                    regression_coeffs,
                    X[:, np.newaxis] - self.means[:, indices]))

        priors = _safe_probability_density(
            self.priors * marginal_norm_factors, marginal_exponents)
        priors = priors.reshape(n_samples, 1, self.n_components)
        return np.sum(priors * posterior_means, axis=-1)

    def to_ellipses(self, factor=1.0):
        """Compute error ellipses.

        An error ellipse shows equiprobable points.

        Parameters
        ----------
        factor : float
            One means standard deviation.

        Returns
        -------
        ellipses : list
            Parameters that describe the error ellipses of all components:
            mean and a tuple of angles, widths and heights. Note that widths
            and heights are semi axes, not diameters.
        """
        self._check_initialized()

        res = []
        for k in range(self.n_components):
            mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
                      random_state=self.random_state)
            res.append((self.means[k], mvn.to_ellipse(factor)))
        return res

    def to_mvn(self):
        """Collapse to a single Gaussian.

        Returns
        -------
        mvn : MVN
            Multivariate normal distribution.
        """
        self._check_initialized()

        mean = np.sum(self.priors[:, np.newaxis] * self.means, 0)
        assert len(self.covariances)
        covariance = np.zeros_like(self.covariances[0])
        covariance += np.sum(self.priors[:, np.newaxis, np.newaxis] * self.covariances, axis=0)
        covariance += self.means.T.dot(np.diag(self.priors)).dot(self.means)
        covariance -= np.outer(mean, mean)
        return MVN(mean=mean, covariance=covariance,
                   verbose=self.verbose, random_state=self.random_state)

    def extract_mvn(self, component_idx):
        """Extract one of the Gaussians from the mixture.

        Parameters
        ----------
        component_idx : int
            Index of the component that should be extracted.

        Returns
        -------
        mvn : MVN
            The component_idx-th multivariate normal distribution of this GMM.
        """
        self._check_initialized()
        if component_idx < 0 or component_idx >= self.n_components:
            raise ValueError("Index of Gaussian must be in [%d, %d)"
                             % (0, self.n_components))
        return MVN(
            mean=self.means[component_idx],
            covariance=self.covariances[component_idx], verbose=self.verbose,
            random_state=self.random_state)

Methods

def apply_oracle_approximating_shrinkage(self, n_samples_eff)

Apply Oracle Approximating Shrinkage to covariances.

Empirical covariances might have negative eigenvalues caused by numerical issues so that they are not positive semi-definite and are not invertible. In these cases it is better to apply this function after training. You can also apply it after each EM step with a flag of GMM.from_samples().

This is an implementation of

Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”, IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

based on the implementation of scikit-learn:

https://scikit-learn.org/stable/modules/generated/oas-function.html#sklearn.covariance.oas

Parameters

n_samples_eff : float or array-like, shape (n_components,)
Number of effective samples from which the covariances have been estimated. A rough estimate would be the size of the dataset. Covariances are computed from a weighted dataset in EM. In this case we can compute the number of effective samples by np.sum(weights, axis=0) ** 2 / np.sum(weights ** 2, axis=0) from an array weights of shape (n_samples, n_components).
Expand source code
def apply_oracle_approximating_shrinkage(self, n_samples_eff):
    """Apply Oracle Approximating Shrinkage to covariances.

    Empirical covariances might have negative eigenvalues caused by
    numerical issues so that they are not positive semi-definite and
    are not invertible. In these cases it is better to apply this
    function after training. You can also apply it after each
    EM step with a flag of `GMM.from_samples`.

    This is an implementation of

    Chen et al., “Shrinkage Algorithms for MMSE Covariance Estimation”,
    IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010.

    based on the implementation of scikit-learn:

    https://scikit-learn.org/stable/modules/generated/oas-function.html#sklearn.covariance.oas

    Parameters
    ----------
    n_samples_eff : float or array-like, shape (n_components,)
        Number of effective samples from which the covariances have been
        estimated. A rough estimate would be the size of the dataset.
        Covariances are computed from a weighted dataset in EM. In this
        case we can compute the number of effective samples by
        `np.sum(weights, axis=0) ** 2 / np.sum(weights ** 2, axis=0)`
        from an array weights of shape (n_samples, n_components).
    """
    self._check_initialized()
    n_samples_eff = np.ones(self.n_components) * np.asarray(n_samples_eff)

    n_features = self.means.shape[1]
    for k in range(self.n_components):
        emp_cov = self.covariances[k]
        mu = np.trace(emp_cov) / n_features
        alpha = np.mean(emp_cov ** 2)
        num = alpha + mu ** 2
        den = (n_samples_eff[k] + 1.) * (alpha - (mu ** 2) / n_features)

        shrinkage = 1. if den == 0 else min(num / den, 1.)
        shrunk_cov = (1. - shrinkage) * emp_cov
        shrunk_cov.flat[::n_features + 1] += shrinkage * mu

        self.covariances[k] = shrunk_cov
def condition(self, indices, x)

Conditional distribution over given indices.

Parameters

indices : array-like, shape (n_new_features,)
Indices of dimensions that we want to condition.
x : array-like, shape (n_new_features,)
Values of the features that we know.

Returns

conditional : GMM
Conditional GMM distribution p(Y | X=x).
Expand source code
def condition(self, indices, x):
    """Conditional distribution over given indices.

    Parameters
    ----------
    indices : array-like, shape (n_new_features,)
        Indices of dimensions that we want to condition.

    x : array-like, shape (n_new_features,)
        Values of the features that we know.

    Returns
    -------
    conditional : GMM
        Conditional GMM distribution p(Y | X=x).
    """
    self._check_initialized()

    indices = np.asarray(indices, dtype=int)
    x = np.asarray(x)

    n_features = self.means.shape[1] - len(indices)
    means = np.empty((self.n_components, n_features))
    covariances = np.empty((self.n_components, n_features, n_features))

    marginal_norm_factors = np.empty(self.n_components)
    marginal_prior_exponents = np.empty(self.n_components)

    for k in range(self.n_components):
        mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
                  random_state=self.random_state)
        conditioned = mvn.condition(indices, x)
        means[k] = conditioned.mean
        covariances[k] = conditioned.covariance

        marginal_norm_factors[k], marginal_prior_exponents[k] = \
            mvn.marginalize(indices).to_norm_factor_and_exponents(x)

    priors = _safe_probability_density(
        self.priors * marginal_norm_factors,
        marginal_prior_exponents[np.newaxis])[0]

    return GMM(n_components=self.n_components, priors=priors, means=means,
               covariances=covariances, random_state=self.random_state)
def extract_mvn(self, component_idx)

Extract one of the Gaussians from the mixture.

Parameters

component_idx : int
Index of the component that should be extracted.

Returns

mvn : MVN
The component_idx-th multivariate normal distribution of this GMM.
Expand source code
def extract_mvn(self, component_idx):
    """Extract one of the Gaussians from the mixture.

    Parameters
    ----------
    component_idx : int
        Index of the component that should be extracted.

    Returns
    -------
    mvn : MVN
        The component_idx-th multivariate normal distribution of this GMM.
    """
    self._check_initialized()
    if component_idx < 0 or component_idx >= self.n_components:
        raise ValueError("Index of Gaussian must be in [%d, %d)"
                         % (0, self.n_components))
    return MVN(
        mean=self.means[component_idx],
        covariance=self.covariances[component_idx], verbose=self.verbose,
        random_state=self.random_state)
def from_samples(self, X, R_diff=0.0001, n_iter=100, init_params='random', oracle_approximating_shrinkage=False)

MLE of the mean and covariance.

Expectation-maximization is used to infer the model parameters. The objective function is non-convex. Hence, multiple runs can have different results.

Parameters

X : array-like, shape (n_samples, n_features)
Samples from the true distribution.
R_diff : float
Minimum allowed difference of responsibilities between successive EM iterations.
n_iter : int
Maximum number of iterations.
init_params : str, optional (default: 'random')
Parameter initialization strategy. If means and covariances are given in the constructor, this parameter will have no effect. 'random' will sample initial means randomly from the dataset and set covariances to identity matrices. This is the computationally cheap solution. 'kmeans++' will use k-means++ initialization for means and initialize covariances to diagonal matrices with variances set based on the average distances of samples in each dimensions. This is computationally more expensive but often gives much better results.
oracle_approximating_shrinkage : bool, optional (default: False)
Use Oracle Approximating Shrinkage (OAS) estimator for covariances to ensure positive semi-definiteness.

Returns

self : GMM
This object.
Expand source code
def from_samples(self, X, R_diff=1e-4, n_iter=100, init_params="random",
                 oracle_approximating_shrinkage=False):
    """MLE of the mean and covariance.

    Expectation-maximization is used to infer the model parameters. The
    objective function is non-convex. Hence, multiple runs can have
    different results.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Samples from the true distribution.

    R_diff : float
        Minimum allowed difference of responsibilities between successive
        EM iterations.

    n_iter : int
        Maximum number of iterations.

    init_params : str, optional (default: 'random')
        Parameter initialization strategy. If means and covariances are
        given in the constructor, this parameter will have no effect.
        'random' will sample initial means randomly from the dataset
        and set covariances to identity matrices. This is the
        computationally cheap solution.
        'kmeans++' will use k-means++ initialization for means and
        initialize covariances to diagonal matrices with variances
        set based on the average distances of samples in each dimensions.
        This is computationally more expensive but often gives much
        better results.

    oracle_approximating_shrinkage : bool, optional (default: False)
        Use Oracle Approximating Shrinkage (OAS) estimator for covariances
        to ensure positive semi-definiteness.

    Returns
    -------
    self : GMM
        This object.
    """
    n_samples, n_features = X.shape

    if self.priors is None:
        self.priors = np.ones(self.n_components,
                              dtype=float) / self.n_components

    if init_params not in ["random", "kmeans++"]:
        raise ValueError("'init_params' must be 'random' or 'kmeans++' "
                         "but is '%s'" % init_params)

    if self.means is None:
        if init_params == "random":
            indices = self.random_state.choice(
                np.arange(n_samples), self.n_components)
            self.means = X[indices]
        else:
            self.means = kmeansplusplus_initialization(
                X, self.n_components, self.random_state)

    if self.covariances is None:
        if init_params == "random":
            self.covariances = np.empty(
                (self.n_components, n_features, n_features))
            self.covariances[:] = np.eye(n_features)
        else:
            self.covariances = covariance_initialization(
                X, self.n_components)

    R = np.zeros((n_samples, self.n_components))
    for _ in range(n_iter):
        R_prev = R

        # Expectation
        R = self.to_responsibilities(X)

        if np.linalg.norm(R - R_prev) < R_diff:
            if self.verbose:
                print("EM converged.")
            break

        # Maximization
        w = R.sum(axis=0) + 10.0 * np.finfo(R.dtype).eps
        R_n = R / w
        self.priors = w / w.sum()
        self.means = R_n.T.dot(X)
        for k in range(self.n_components):
            Xm = X - self.means[k]
            self.covariances[k] = (R_n[:, k, np.newaxis] * Xm).T.dot(Xm)

        if oracle_approximating_shrinkage:
            n_samples_eff = (np.sum(R_n, axis=0) ** 2 /
                             np.sum(R_n ** 2, axis=0))
            self.apply_oracle_approximating_shrinkage(n_samples_eff)

    return self
def is_in_confidence_region(self, x, alpha)

Check if sample is in alpha confidence region.

Check whether the sample lies in the confidence region of the closest MVN according to the Mahalanobis distance.

Parameters

x : array, shape (n_features,)
Sample
alpha : float
Value between 0 and 1 that defines the probability of the confidence region, e.g., 0.6827 for the 1-sigma confidence region or 0.9545 for the 2-sigma confidence region.

Returns

is_in_confidence_region : bool
Is the sample in the alpha confidence region?
Expand source code
def is_in_confidence_region(self, x, alpha):
    """Check if sample is in alpha confidence region.

    Check whether the sample lies in the confidence region of the closest
    MVN according to the Mahalanobis distance.

    Parameters
    ----------
    x : array, shape (n_features,)
        Sample

    alpha : float
        Value between 0 and 1 that defines the probability of the
        confidence region, e.g., 0.6827 for the 1-sigma confidence
        region or 0.9545 for the 2-sigma confidence region.

    Returns
    -------
    is_in_confidence_region : bool
        Is the sample in the alpha confidence region?
    """
    self._check_initialized()
    dists = [MVN(mean=self.means[k], covariance=self.covariances[k]
                 ).squared_mahalanobis_distance(x)
             for k in range(self.n_components)]
    # we have one degree of freedom less than number of dimensions
    n_dof = len(x) - 1
    return min(dists) <= chi2(n_dof).ppf(alpha)
def predict(self, indices, X)

Predict means of posteriors.

Same as condition() but for multiple samples.

Parameters

indices : array-like, shape (n_features_1,)
Indices of dimensions that we want to condition.
X : array-like, shape (n_samples, n_features_1)
Values of the features that we know.

Returns

Y : array, shape (n_samples, n_features_2)
Predicted means of missing values.
Expand source code
def predict(self, indices, X):
    """Predict means of posteriors.

    Same as condition() but for multiple samples.

    Parameters
    ----------
    indices : array-like, shape (n_features_1,)
        Indices of dimensions that we want to condition.

    X : array-like, shape (n_samples, n_features_1)
        Values of the features that we know.

    Returns
    -------
    Y : array, shape (n_samples, n_features_2)
        Predicted means of missing values.
    """
    self._check_initialized()

    indices = np.asarray(indices, dtype=int)
    X = np.asarray(X)

    n_samples = len(X)
    output_indices = invert_indices(self.means.shape[1], indices)
    regression_coeffs = np.empty((
        self.n_components, len(output_indices), len(indices)))

    marginal_norm_factors = np.empty(self.n_components)
    marginal_exponents = np.empty((n_samples, self.n_components))

    for k in range(self.n_components):
        regression_coeffs[k] = regression_coefficients(
            self.covariances[k], output_indices, indices)
        mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
                  random_state=self.random_state)
        marginal_norm_factors[k], marginal_exponents[:, k] = \
            mvn.marginalize(indices).to_norm_factor_and_exponents(X)

    # posterior_means = mean_y + cov_xx^-1 * cov_xy * (x - mean_x)
    posterior_means = (
            self.means[:, output_indices][:, :, np.newaxis].T +
            np.einsum(
                "ijk,lik->lji",
                regression_coeffs,
                X[:, np.newaxis] - self.means[:, indices]))

    priors = _safe_probability_density(
        self.priors * marginal_norm_factors, marginal_exponents)
    priors = priors.reshape(n_samples, 1, self.n_components)
    return np.sum(priors * posterior_means, axis=-1)
def sample(self, n_samples)

Sample from Gaussian mixture distribution.

Parameters

n_samples : int
Number of samples.

Returns

X : array, shape (n_samples, n_features)
Samples from the GMM.
Expand source code
def sample(self, n_samples):
    """Sample from Gaussian mixture distribution.

    Parameters
    ----------
    n_samples : int
        Number of samples.

    Returns
    -------
    X : array, shape (n_samples, n_features)
        Samples from the GMM.
    """
    self._check_initialized()

    mvn_indices = self.random_state.choice(
        self.n_components, size=(n_samples,), p=self.priors)
    mvn_indices.sort()
    split_indices = np.hstack(
        ((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,)))
    clusters = np.unique(mvn_indices)
    lens = np.diff(split_indices)
    samples = np.empty((n_samples, self.means.shape[1]))
    for i, (k, n_samples) in enumerate(zip(clusters, lens)):
        samples[split_indices[i]:split_indices[i + 1]] = MVN(
            mean=self.means[k], covariance=self.covariances[k],
            random_state=self.random_state).sample(n_samples=n_samples)
    return samples
def sample_confidence_region(self, n_samples, alpha)

Sample from alpha confidence region.

Each MVN is selected with its prior probability and then we sample from the confidence region of the selected MVN.

Parameters

n_samples : int
Number of samples.
alpha : float
Value between 0 and 1 that defines the probability of the confidence region, e.g., 0.6827 for the 1-sigma confidence region or 0.9545 for the 2-sigma confidence region.

Returns

X : array, shape (n_samples, n_features)
Samples from the confidence region.
Expand source code
def sample_confidence_region(self, n_samples, alpha):
    """Sample from alpha confidence region.

    Each MVN is selected with its prior probability and then we
    sample from the confidence region of the selected MVN.

    Parameters
    ----------
    n_samples : int
        Number of samples.

    alpha : float
        Value between 0 and 1 that defines the probability of the
        confidence region, e.g., 0.6827 for the 1-sigma confidence
        region or 0.9545 for the 2-sigma confidence region.

    Returns
    -------
    X : array, shape (n_samples, n_features)
        Samples from the confidence region.
    """
    self._check_initialized()

    mvn_indices = self.random_state.choice(
        self.n_components, size=(n_samples,), p=self.priors)
    mvn_indices.sort()
    split_indices = np.hstack(
        ((0,), np.nonzero(np.diff(mvn_indices))[0] + 1, (n_samples,)))
    clusters = np.unique(mvn_indices)
    lens = np.diff(split_indices)
    samples = np.empty((n_samples, self.means.shape[1]))
    for i, (k, n_samples) in enumerate(zip(clusters, lens)):
        samples[split_indices[i]:split_indices[i + 1]] = MVN(
            mean=self.means[k], covariance=self.covariances[k],
            random_state=self.random_state).sample_confidence_region(
            n_samples=n_samples, alpha=alpha)
    return samples
def to_ellipses(self, factor=1.0)

Compute error ellipses.

An error ellipse shows equiprobable points.

Parameters

factor : float
One means standard deviation.

Returns

ellipses : list
Parameters that describe the error ellipses of all components: mean and a tuple of angles, widths and heights. Note that widths and heights are semi axes, not diameters.
Expand source code
def to_ellipses(self, factor=1.0):
    """Compute error ellipses.

    An error ellipse shows equiprobable points.

    Parameters
    ----------
    factor : float
        One means standard deviation.

    Returns
    -------
    ellipses : list
        Parameters that describe the error ellipses of all components:
        mean and a tuple of angles, widths and heights. Note that widths
        and heights are semi axes, not diameters.
    """
    self._check_initialized()

    res = []
    for k in range(self.n_components):
        mvn = MVN(mean=self.means[k], covariance=self.covariances[k],
                  random_state=self.random_state)
        res.append((self.means[k], mvn.to_ellipse(factor)))
    return res
def to_mvn(self)

Collapse to a single Gaussian.

Returns

mvn : MVN
Multivariate normal distribution.
Expand source code
def to_mvn(self):
    """Collapse to a single Gaussian.

    Returns
    -------
    mvn : MVN
        Multivariate normal distribution.
    """
    self._check_initialized()

    mean = np.sum(self.priors[:, np.newaxis] * self.means, 0)
    assert len(self.covariances)
    covariance = np.zeros_like(self.covariances[0])
    covariance += np.sum(self.priors[:, np.newaxis, np.newaxis] * self.covariances, axis=0)
    covariance += self.means.T.dot(np.diag(self.priors)).dot(self.means)
    covariance -= np.outer(mean, mean)
    return MVN(mean=mean, covariance=covariance,
               verbose=self.verbose, random_state=self.random_state)
def to_probability_density(self, X)

Compute probability density.

Parameters

X : array-like, shape (n_samples, n_features)
Data.

Returns

p : array, shape (n_samples,)
Probability densities of data.
Expand source code
def to_probability_density(self, X):
    """Compute probability density.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Data.

    Returns
    -------
    p : array, shape (n_samples,)
        Probability densities of data.
    """
    self._check_initialized()

    p = [MVN(mean=self.means[k], covariance=self.covariances[k],
             random_state=self.random_state).to_probability_density(X)
         for k in range(self.n_components)]
    return np.dot(self.priors, p)
def to_responsibilities(self, X)

Compute responsibilities of each MVN for each sample.

Parameters

X : array-like, shape (n_samples, n_features)
Data.

Returns

R : array, shape (n_samples, n_components)
 
Expand source code
def to_responsibilities(self, X):
    """Compute responsibilities of each MVN for each sample.

    Parameters
    ----------
    X : array-like, shape (n_samples, n_features)
        Data.

    Returns
    -------
    R : array, shape (n_samples, n_components)
    """
    self._check_initialized()

    n_samples = X.shape[0]

    norm_factors = np.empty(self.n_components)
    exponents = np.empty((n_samples, self.n_components))

    for k in range(self.n_components):
        norm_factors[k], exponents[:, k] = MVN(
            mean=self.means[k], covariance=self.covariances[k],
            random_state=self.random_state).to_norm_factor_and_exponents(X)

    return _safe_probability_density(self.priors * norm_factors, exponents)