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Motivation



Big Picture - Robot Behavior Generation

How can we combine prior knowledge with machine learning?

Reinforcement Learning:

● Initialization: imitation learning (programming by demonstration)
● Prestructured policies
● Maybe (?): Learning in Cartesian space + inverse kinematics



Motivation - Learning from Human Demonstration

Gutzeit et al. (2018)



Motivation - Correspondence Problem
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Methods



Methods - Prestructured Policy
Dynamical Movement Primitive (DMP)

● Adaptable and learnable trajectories
● For imitation and reinforcement learning

Since demonstrations are transferred in 
Cartesian space, is it better to refine 
trajectories in Cartesian space?

Ijspeert et al. (2013); Ude et al. (2014)
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Candidates
We will compare reinforcement learning (policy search) with...

1. Joint space DMP (Joint space)
2. Cartesian DMP + IK that outputs the last reachable pose (“Exact IK”)
3. Cartesian DMP + Approximation of IK (Approximate IK)



Methods - Skill Refinement / Policy Search
● Many policy search algorithms work similarly
● In this work we selected CMA-ES (Hansen and Ostermeier, 2001)
● CMA-ES only has a few critical hyperparameters
● One of them: initial step size; has been set to not make a difference in joint 

and Cartesian space



Methods - Numerical Inverse Kinematics

(Beeson and Ames, 2015)

quaternion distance

Forward Kinematics

Indirect SQP

(IK in constraints)

Direct SQP

Approximation of IK



Methods - Approximation of Inverse Kinematics
Red: exact solution not found Approximation with low weight for orientation



Experiments



Problem 1/4 - Viapoint
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Problem 2/4 - Obstacle Avoidance

Side view Front view



Problem 3/4 - Pendulum



Problem 4/4 - Pouring



Pouring - Failure (Glass Tips Over)



Problems

Difficulty



PendulumViapoint

Results

Obstacle

Learning in Cartesian
space is clearly better

There is no significant 
difference here

Pouring

Difficulty

1 3

Learning in Cartesian space can 
be faster, but depends on IK2



Separability in Cartesian Viapoint Problems



Reward Surface - Approximation vs. Exact IK
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Conclusion



Conclusion
● Learn in the space in which the primary objective is 

defined
○ If you want smooth joint trajectories, learn in joint space
○ If you have a viapoint problem, learn in Cartesian space
○ If the relation between parameters and reward is too 

complex it does not make a difference

● Direct inverse kinematics formulation with 
approximation by SQP helps

Open Question

● What are the implications for other learning 
algorithms, e.g., Deep RL?
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Code

Code available at github.com/rock-learning/approxik 
(except pouring environment)

https://github.com/rock-learning/approxik/


Why Is Pouring More Difficult?
● Slight action / parameter changes result in completely different rewards

○ Glass tips over
○ Marbles fall off the table
○ Collision with obstacle

● Temporal credit assignment is not possible with CMA-ES
○ Could be fixed with another policy search algorithm



Pouring - Failure (Missed Target)



Pouring - Success



Dynamical Movement Primitives
Figure: Original DMP (black), modified goal (green), and modified goal online (red).

Ijspeert et al. (2013); 
Ude et al. (2014)



Reward Landscapes

Policy parameters
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