A Comparison of Policy Search in Joint Space and Cartesian Space for Refinement of Skills Alexander Fabisch

Universität Bremen

28th International Conference on Robotics in Alpe-Adria-Danube Region (RAAD 2019)

Outline

- 1. Motivation Learning from Human Demonstration
- 2. Methods
 - a. Movement Representation
 - b. Approximation of Inverse Kinematics
 - c. Policy Search
- 3. Experiments

Motivation

Big Picture - Robot Behavior Generation

How can we combine prior knowledge with machine learning?

Reinforcement Learning:

- Initialization: imitation learning (programming by demonstration)
- Prestructured policies
- Maybe (?): Learning in Cartesian space + inverse kinematics

Motivation - Learning from Human Demonstration

Motivation - Correspondence Problem

Motion Capture

Skill Transfer

Gutzeit et al. (2018)

Reinforcement Learning

Methods

Methods - Prestructured Policy

Dynamical Movement Primitive (DMP)

- Adaptable and learnable trajectories
- For imitation and reinforcement learning

ljspeert et al. (2013); Ude et al. (2014)

Since demonstrations are transferred in Cartesian space, **is it better to refine trajectories in Cartesian space?**

Candidates

We will compare reinforcement learning (policy search) with...

- 1. Joint space DMP (Joint space)
- 2. Cartesian DMP + IK that outputs the last reachable pose ("Exact IK")
- 3. Cartesian DMP + Approximation of IK (Approximate IK)

Methods - Skill Refinement / Policy Search

- Many policy search algorithms work similarly
- In this work we selected CMA-ES (Hansen and Ostermeier, 2001)
- CMA-ES only has a few critical hyperparameters
- One of them: initial step size; has been set to not make a difference in joint and Cartesian space

Methods - Numerical Inverse Kinematics

Forward Kinematics

$$f(oldsymbol{q}_t) = oldsymbol{p}_t$$

Methods - Approximation of Inverse Kinematics

Experiments

Problem 1/4 - Viapoint

Problem 2/4 - Obstacle Avoidance

Problem 3/4 - Pendulum

Problem 4/4 - Pouring

Pouring - Failure (Glass Tips Over)

Difficulty

Separability in Cartesian Viapoint Problems

Reward Surface - Approximation vs. Exact IK

Conclusion

Conclusion

- Learn in the space in which the primary objective is defined
 - If you want smooth joint trajectories, learn in joint space
 - If you have a viapoint problem, learn in Cartesian space
 - If the relation between parameters and reward is too complex it does not make a difference
- Direct inverse kinematics formulation with approximation by SQP helps

Open Question

• What are the implications for other learning algorithms, e.g., Deep RL?

OGNITIVELY ENHANCED ROBOT FOR LEXIBLE MANUFACTURING OF IETAL AND COMPOSITE PARTS

Literature

- L. Gutzeit, A. Fabisch, M. Otto, J.H. Metzen, J. Hansen, F. Kirchner, and E.A. Kirchner. The BesMan learning platform for automated robot skill learning. *Frontiers in Robotics and AI*, 5, 2018.
- 2. A. Ude, B. Nemec, T. Petri, and J. Morimoto. Orientation in Cartesian space dynamic movement primitives. In *ICRA*, pages 2997-3004, 2014.
- 3. A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal. Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors. *Neural Computation*, 25:328-373, 2013.
- 4. P. Beeson and B. Ames. TRAC-IK: An open-source library for improved solving of generic inverse kinematics. In *Humanoids*, pages 928-935, 2015.
- 5. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strategies. *Evolutionary Computation*, 9:159-195, 2001.

Code

Code available at <u>github.com/rock-learning/approxik</u> (except pouring environment)

Why Is Pouring More Difficult?

- Slight action / parameter changes result in completely different rewards
 - Glass tips over
 - Marbles fall off the table
 - Collision with obstacle
- Temporal credit assignment is not possible with CMA-ES
 - Could be fixed with another policy search algorithm

Pouring - Failure (Missed Target)

Pouring - Success

Dynamical Movement Primitives

Figure: Original DMP (black), modified goal (green), and modified goal online (red).

