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Contextual Function Optimization

Contextual policy search, an extension to the original problem

formulation of policy search:

arg max

ω

∫
s
p(s)

∫
θ

πω(θ|s)E [R(θ, s)] dθds,

where s ∈ S is a context, πω is a stochastic upper-level policy

parameterized by ω that defines a distribution of policy parame-

ters for a given context (Deisenroth et al., 2013). The return R is

extended to take into account the context. During the learning

process, we optimize ω, observe the current context s, and select

θi ∼ πω(θ|s).

Contextual black-box optimization, the corresponding deter-

ministic problem formulation:

arg min

ω

∫
s
fs(gω(s))ds,

where fs is a parameterized objective and we want to find an op-

timal function gω from a parameterized class of functions.

Illustration of 1D contextual function optimization.
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Extending C-CMA-ES to aC-ACM-ES

C-CMA-ES (Abdolmaleki et al., 2017) is based on CMA-ES (Hansen and Ostermeier, 2001). We

transfer two extensions of CMA-ES to C-CMA-ES: active CMA-ES (Jastrebski and Arnold, 2006)

and ACM-ES (Loshchilov et al., 2010), which uses a surrogate model.

Hyperparameters: We have two configurations. Standard and aggressive exploitation of the surrogate model.

We set the number of samples the surrogate a�er the model is accurate enough to be used to nstart = 3000 or

nstart = 100. The number of samples tested with the surrogate model is set to λ′ = 3λ and λ′ = 10λ respectively.

The population size is λ = 50. Larger values for niter , the number of iterations to train the surrogate model, improve

the result. As a compromise between computational overhead and sample-e�iciency, we select niter = 1000. cpow is

a parameter of the ranking SVM objective. Although in the original ACM-ES (Loshchilov et al., 2010) the default

value is 2, cpow = 1 works be�er for C-ACM-ES.

Evaluation
Experiments are similar to the ones of Abdolmaleki et al. (2017) with additional objectives. We

make standard benchmarks contextual by defining fs(θ) = f (θ + Gs), where components of

the matrix G are sampled iid from N (0, 1). In our case θ ∈ R20
and s ∈ Rns

. Components of

s are sampled from [1, 2). To make results comparable to the one of Abdolmaleki et al. (2017),

we use the same sphere and Rosenbrock functions. In addition, we use the Ackley function and

ellipsoidal, discus, and di�erent powers from the COCO platform (Hansen et al., 2016).

Algorithms are compared in Table 1. We use C-REPS with ε = 1 and C-CMA-ES as baselines.

aC-CMA-ES refers to active C-CMA-ES, C-ACM-ES uses the surrogate model, and aC-ACM-ES

combines both. “+” indicates aggressive exploitation of the surrogate model.

Results: Variants of C-ACM-ES outperform vanilla C-CMA-ES. C-REPS is o�en much faster in

the early phase (see Figure 2 (a)). In the first 10 generations C-REPS outperforms all algorithms

by orders of magnitude. This phase is interesting, e.g., for optimization in robotics. However,

C-REPS converges too early while variants of C-CMA-ES will make progress (see Figure 2 (b)).
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Learning curves (mean and standard deviation of 20 experiments) for (a) Discus and (b) Rosenbrock function.

Objective Sphere Rosenbrock Ackley Ellipsoidal Diff. Powers Discus

ns 2 1 1 1 1 1

Test after generation 200 850 1100 800 600 850

Method Average objective function value over contexts:
1

|S|
∑

s∈S fs(x)

C-REPS −4.509 · 10
+01 −1.255 · 10

+04 −1.947 · 10
+01 −2.944 · 10

+05 −9.088 · 10
+02 −1.288 · 10

+02

C-CMA-ES −1.815 · 10
−05 −2.328 · 10

−03 −8.762 · 10
−07 −2.337 · 10

+02 −1.562 · 10
−07 −2.995 · 10

−10

aC-CMA-ES −1.348 · 10
−05 −9.736 · 10

−01 −8.773 · 10
−07 −1.524 · 10

+02 −3.038 · 10
−07 −3.838 · 10

−10

C-ACM-ES+ −1.294 · 10
−08 −1.445 · 10

+15
NaN −1.300 · 10

+16 −7.111 · 10
+74 −8.297 · 10

+27

aC-ACM-ES+ −1.506 · 10
−01 −3.227 · 10

+19
NaN −2.407 · 10

+18 −8.717 · 10
+82 −1.250 · 10

+24

C-ACM-ES −6.257 · 10
−04 −3.656 · 10

−09 −3.995 · 10
−09 −1.039 · 10

−10 −2.464 · 10
−14 −8.877 · 10

−12

aC-ACM-ES −2.309 · 10
−04 −3.899 · 10

−11 −1.813 · 10
−08 −2.388 · 10

−11 −1.284 · 10
−14 −1.684 · 10

−11

Results on several objective functions. Best results are underlined.

Conclusion
We demonstrated that active C-CMA-ES, C-ACM-ES and its combination yield impressive re-

sults on contextual function optimization problems in comparison to C-CMA-ES. We have

shown, however, that these results are actually not directly transferable to the domains where

we would like to learn successful contextual policies in 100–1000 episodes at maximum.


